Home
Class 12
MATHS
lim(xrarr0)(2log(1+x)-log(1+2x))/(x^2) ...

`lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2)` is equal to

A

0

B

1

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{2 \log(1+x) - \log(1+2x)}{x^2} \), we will follow these steps: ### Step 1: Rewrite the expression We can use the property of logarithms that states \( a \log(b) = \log(b^a) \). Thus, we can rewrite \( 2 \log(1+x) \) as: \[ 2 \log(1+x) = \log((1+x)^2) \] So, the limit becomes: \[ \lim_{x \to 0} \frac{\log((1+x)^2) - \log(1+2x)}{x^2} \] ### Step 2: Combine the logarithms Using the property of logarithms that states \( \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \), we can combine the logarithms: \[ \lim_{x \to 0} \frac{\log\left(\frac{(1+x)^2}{1+2x}\right)}{x^2} \] ### Step 3: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, creating a \( \frac{0}{0} \) indeterminate form. We can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\frac{d}{dx} \left[\log\left(\frac{(1+x)^2}{1+2x}\right)\right]}{\frac{d}{dx}(x^2)} \] ### Step 4: Differentiate the numerator and denominator 1. Differentiate the numerator: \[ \frac{d}{dx} \left[\log\left(\frac{(1+x)^2}{1+2x}\right)\right] = \frac{1}{\frac{(1+x)^2}{1+2x}} \cdot \frac{d}{dx}\left[\frac{(1+x)^2}{1+2x}\right] \] Using the quotient rule: \[ \frac{d}{dx}\left[\frac{(1+x)^2}{1+2x}\right] = \frac{(1+2x)(2(1+x)) - (1+x)^2(2)}{(1+2x)^2} \] 2. Differentiate the denominator: \[ \frac{d}{dx}(x^2) = 2x \] ### Step 5: Evaluate the limit again Now substituting back into the limit: \[ \lim_{x \to 0} \frac{\frac{1}{\frac{(1+x)^2}{1+2x}} \cdot \frac{(1+2x)(2(1+x)) - (1+x)^2(2)}{(1+2x)^2}}{2x} \] ### Step 6: Simplify and evaluate As \( x \to 0 \): - The numerator simplifies to \( \frac{2(1)(1)}{1} = 2 \) - The denominator approaches \( 2(0) = 0 \) Thus, we can evaluate the limit: \[ \lim_{x \to 0} \frac{2}{2x} = 1 \] ### Final Result The limit is: \[ \lim_{x \to 0} \frac{2 \log(1+x) - \log(1+2x)}{x^2} = 1 \]

To solve the limit \( \lim_{x \to 0} \frac{2 \log(1+x) - \log(1+2x)}{x^2} \), we will follow these steps: ### Step 1: Rewrite the expression We can use the property of logarithms that states \( a \log(b) = \log(b^a) \). Thus, we can rewrite \( 2 \log(1+x) \) as: \[ 2 \log(1+x) = \log((1+x)^2) \] So, the limit becomes: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

lim_(xrarr0) (xcos x-log(1+x))/(x^2) equals

lim_(x to 2)(log(x-1))/(x-2) is equal to

lim_(xrarr0)[(log(1+x) -x + x^2/2)/x^3]

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

lim_(xrarr0)((1-e^x)sin x )/(x^2+x^3) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

7. lim_(x rarr0)(x(log x)^(2))/(1+x+x^(2))

lim_(xrarr0)[1/x - log(1-x)/x^2] =

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |