Home
Class 12
MATHS
The value of lim(xrarr0)(cosx)^(cotx), i...

The value of `lim_(xrarr0)(cosx)^(cotx)`, is

A

e

B

`(1)/(e)`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 0} (\cos x)^{\cot x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to 0} (\cos x)^{\cot x} \] We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} (\cos x)^{\frac{\cos x}{\sin x}} \] ### Step 2: Identify the form of the limit As \( x \to 0 \), \( \cos x \to 1 \) and \( \cot x \to \infty \). This gives us an indeterminate form of \( 1^{\infty} \). ### Step 3: Use the exponential limit property We can use the property that if \( \lim_{x \to a} f(x)^{g(x)} \) results in \( 1^{\infty} \), we can express it as: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1) \cdot g(x)} \] In our case, let \( f(x) = \cos x \) and \( g(x) = \cot x \). Thus, we rewrite the limit: \[ \lim_{x \to 0} (\cos x)^{\cot x} = e^{\lim_{x \to 0} (\cos x - 1) \cdot \cot x} \] ### Step 4: Simplify the expression Now we need to evaluate: \[ \lim_{x \to 0} (\cos x - 1) \cdot \cot x \] We know that \( \cos x - 1 \) can be approximated using the Taylor series expansion: \[ \cos x \approx 1 - \frac{x^2}{2} \quad \text{as } x \to 0 \] Thus: \[ \cos x - 1 \approx -\frac{x^2}{2} \] And since \( \cot x = \frac{\cos x}{\sin x} \) and \( \sin x \approx x \) as \( x \to 0 \), we have: \[ \cot x \approx \frac{1}{x} \] ### Step 5: Substitute and find the limit Now substituting these approximations: \[ \lim_{x \to 0} \left(-\frac{x^2}{2}\right) \cdot \frac{1}{x} = \lim_{x \to 0} -\frac{x}{2} = 0 \] ### Step 6: Final result Thus, we have: \[ \lim_{x \to 0} (\cos x)^{\cot x} = e^{0} = 1 \] ### Conclusion The value of \( \lim_{x \to 0} (\cos x)^{\cot x} \) is: \[ \boxed{1} \]

To find the limit \( \lim_{x \to 0} (\cos x)^{\cot x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to 0} (\cos x)^{\cot x} \] We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the limit as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (cosecx-cotx)

lim_(xrarr0)(xlogx)

The value of lim_(xrarr 0) (1+sinx)^(2cotx) , is

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

Evaluate: ("lim")_(xrarr0)(cosx)^(cotx)

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr0)(cosx)^(cotx), is

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |