Home
Class 12
MATHS
The value of lim(xrarr0) {(a^x+b^x+c^x)/...

The value of `lim_(xrarr0) {(a^x+b^x+c^x)/(3)}^(1//x)`, is

A

abc

B

`(abc)^1//3`

C

`(1)/(3)abc `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the limit form First, we substitute \( x = 0 \) into the expression: \[ \frac{a^0 + b^0 + c^0}{3} = \frac{1 + 1 + 1}{3} = 1 \] Thus, we have: \[ \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} \to 1^{\infty} \text{ as } x \to 0 \] This is an indeterminate form of type \( 1^{\infty} \). ### Step 2: Apply the logarithm To resolve this indeterminate form, we can take the natural logarithm: \[ L = \lim_{x \to 0} \frac{1}{x} \ln \left( \frac{a^x + b^x + c^x}{3} \right) \] ### Step 3: Simplify the logarithm Now, we can write: \[ L = \lim_{x \to 0} \frac{1}{x} \left( \ln(a^x + b^x + c^x) - \ln(3) \right) \] Since \( \ln(3) \) is a constant, we can focus on \( \ln(a^x + b^x + c^x) \). ### Step 4: Evaluate \( a^x + b^x + c^x \) As \( x \to 0 \): \[ a^x \to 1, \quad b^x \to 1, \quad c^x \to 1 \] Thus: \[ a^x + b^x + c^x \to 3 \] This means: \[ \ln(a^x + b^x + c^x) \to \ln(3) \] ### Step 5: Apply L'Hôpital's Rule Now we have: \[ L = \lim_{x \to 0} \frac{\ln(a^x + b^x + c^x) - \ln(3)}{x} \] This is a \( 0/0 \) form, so we can apply L'Hôpital's Rule: \[ L = \lim_{x \to 0} \frac{\frac{d}{dx} \left( \ln(a^x + b^x + c^x) \right)}{\frac{d}{dx}(x)} \] The derivative of \( x \) is \( 1 \). ### Step 6: Differentiate the numerator Using the chain rule: \[ \frac{d}{dx} \left( \ln(a^x + b^x + c^x) \right) = \frac{1}{a^x + b^x + c^x} \cdot (a^x \ln a + b^x \ln b + c^x \ln c) \] Thus: \[ L = \lim_{x \to 0} \frac{a^x \ln a + b^x \ln b + c^x \ln c}{a^x + b^x + c^x} \] ### Step 7: Substitute \( x = 0 \) Now substituting \( x = 0 \): \[ L = \frac{1 \cdot \ln a + 1 \cdot \ln b + 1 \cdot \ln c}{3} = \frac{\ln a + \ln b + \ln c}{3} \] ### Step 8: Exponentiate to find the limit Thus, we find: \[ \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} = e^L = e^{\frac{\ln a + \ln b + \ln c}{3}} = (abc)^{\frac{1}{3}} \] ### Final Answer The value of the limit is: \[ \boxed{(abc)^{\frac{1}{3}}} \]

To solve the limit \( \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the limit form First, we substitute \( x = 0 \) into the expression: \[ \frac{a^0 + b^0 + c^0}{3} = \frac{1 + 1 + 1}{3} = 1 \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0)x sec x

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

Evaluate: lim_(xrarr0)x^x

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_(xrarr0) (x^(2)-x)/(sinx)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr0) {(a^x+b^x+c^x)/(3)}^(1//x), is

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |