Home
Class 12
MATHS
The value of lim(x rarr a) (2- a/x)^(tan...

The value of `lim_(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) ` is:

A

`e^(-1//pi)`

B

`e^(2//pi)`

C

`e^(-2//pi)`

D

`e^(1//pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to a} \left(2 - \frac{a}{x}\right)^{\tan\left(\frac{\pi x}{2a}\right)} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ L = \lim_{x \to a} \left(2 - \frac{a}{x}\right)^{\tan\left(\frac{\pi x}{2a}\right)} \] We can express \(2\) as \(1 + 1\): \[ L = \lim_{x \to a} \left(1 + \left(1 - \frac{a}{x}\right)\right)^{\tan\left(\frac{\pi x}{2a}\right)} \] ### Step 2: Check the form of the limit Now, we evaluate the limit as \(x\) approaches \(a\): \[ \frac{a}{x} \to 1 \quad \text{as } x \to a \Rightarrow 1 - \frac{a}{x} \to 0 \] Thus, we have: \[ L = \lim_{x \to a} \left(1 + \left(1 - \frac{a}{x}\right)\right)^{\tan\left(\frac{\pi x}{2a}\right)} \to 1^{\infty} \] This is an indeterminate form \(1^{\infty}\). ### Step 3: Apply the exponential limit theorem Using the standard limit form for \(1^{\infty}\): \[ L = e^{\lim_{x \to a} \left(1 - \frac{a}{x}\right) \tan\left(\frac{\pi x}{2a}\right)} \] ### Step 4: Substitute \(x = a + h\) To evaluate the limit, we can substitute \(x = a + h\) where \(h \to 0\): \[ 1 - \frac{a}{x} = 1 - \frac{a}{a + h} = \frac{h}{a + h} \] And, \[ \tan\left(\frac{\pi x}{2a}\right) = \tan\left(\frac{\pi (a + h)}{2a}\right) = \tan\left(\frac{\pi}{2} + \frac{\pi h}{2a}\right) = -\cot\left(\frac{\pi h}{2a}\right) \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ L = e^{\lim_{h \to 0} \frac{h}{a + h} \cdot \left(-\cot\left(\frac{\pi h}{2a}\right)\right)} \] ### Step 6: Evaluate the limit Using the fact that \(\cot\left(x\right) = \frac{\cos(x)}{\sin(x)}\) and \(\sin(x) \sim x\) as \(x \to 0\): \[ \cot\left(\frac{\pi h}{2a}\right) \sim \frac{2a}{\pi h} \quad \text{as } h \to 0 \] Thus, \[ L = e^{\lim_{h \to 0} \frac{h}{a + h} \cdot \left(-\frac{2a}{\pi h}\right)} = e^{\lim_{h \to 0} -\frac{2a}{\pi(a + h)}} \] As \(h \to 0\), this limit simplifies to: \[ L = e^{-\frac{2a}{\pi a}} = e^{-\frac{2}{\pi}} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{e^{-\frac{2}{\pi}}} \]

To solve the limit problem \( \lim_{x \to a} \left(2 - \frac{a}{x}\right)^{\tan\left(\frac{\pi x}{2a}\right)} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ L = \lim_{x \to a} \left(2 - \frac{a}{x}\right)^{\tan\left(\frac{\pi x}{2a}\right)} \] We can express \(2\) as \(1 + 1\): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Value of "lim"_(x rarr 1) (1-x) "tan " (pi x)/(2) is

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

lim_(x rarr oo)e^(-x)x^(2)

lim_(x rarr0)(1+2x)^(5/x)

The value of : lim_(x rarr0)(cosx-1)/(x) is

lim_(x rarr0)(2x^2-3x)/x

lim_(xrarr0) (tan 4x)/(tan 2x)

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

lim_(x rarr0)(x-sin x)/(tan^(2)x)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) is:

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |