Home
Class 12
MATHS
lim(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x i...

`lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x` is equal to

A

`e^6`

B

`e^-6`

C

`e^2`

D

`e^4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \right)^x \), we can follow these steps: ### Step 1: Simplify the expression inside the limit We start by simplifying the fraction inside the limit: \[ \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \] As \( x \) approaches infinity, we can factor out \( x^2 \) from both the numerator and the denominator: \[ \frac{x^2(1 + \frac{4}{x} - \frac{3}{x^2})}{x^2(1 - \frac{2}{x} + \frac{5}{x^2})} \] This simplifies to: \[ \frac{1 + \frac{4}{x} - \frac{3}{x^2}}{1 - \frac{2}{x} + \frac{5}{x^2}} \] ### Step 2: Evaluate the limit of the simplified expression Now, we take the limit of this expression as \( x \) approaches infinity: \[ \lim_{x \to \infty} \frac{1 + \frac{4}{x} - \frac{3}{x^2}}{1 - \frac{2}{x} + \frac{5}{x^2}} = \frac{1 + 0 - 0}{1 - 0 + 0} = 1 \] ### Step 3: Rewrite the limit in exponential form Since we have \( \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \right)^x \) approaching \( 1^x \), which is an indeterminate form \( 1^\infty \), we can rewrite it using the exponential limit: \[ \lim_{x \to \infty} \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \right)^x = e^{\lim_{x \to \infty} \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} - 1 \right) x} \] ### Step 4: Find the limit of the exponent Next, we need to find the limit of the exponent: \[ \lim_{x \to \infty} \left( \frac{x^2 + 4x - 3 - (x^2 - 2x + 5)}{x^2 - 2x + 5} \right) x \] This simplifies to: \[ \lim_{x \to \infty} \left( \frac{6x - 8}{x^2 - 2x + 5} \right) x \] ### Step 5: Simplify the limit further Now, we can simplify this limit: \[ = \lim_{x \to \infty} \frac{6x^2 - 8x}{x^2 - 2x + 5} \] Dividing the numerator and the denominator by \( x^2 \): \[ = \lim_{x \to \infty} \frac{6 - \frac{8}{x}}{1 - \frac{2}{x} + \frac{5}{x^2}} = \frac{6 - 0}{1 - 0 + 0} = 6 \] ### Step 6: Final result Thus, we have: \[ \lim_{x \to \infty} \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \right)^x = e^6 \] So the final answer is: \[ \boxed{e^6} \]

To solve the limit problem \( \lim_{x \to \infty} \left( \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \right)^x \), we can follow these steps: ### Step 1: Simplify the expression inside the limit We start by simplifying the fraction inside the limit: \[ \frac{x^2 + 4x - 3}{x^2 - 2x + 5} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

lim_(xrarr0) (x^(2)-3x+2)

lim_(x -> oo) ((x-3)/(x+2))^x is equal to

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)

lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

lim_(xrarr oo) (1-(4)/(x-1))^(3x-1) is equal to

lim_(x->oo)((x^3)/(3x^2-4)-(x^2)/(3x+2)) is equal to (a) does not exist (b) 1//3 (c) 0 (d) 2/9

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |