Home
Class 12
MATHS
lim(xrarr oo) (1-(4)/(x-1))^(3x-1) is eq...

`lim_(xrarr oo) (1-(4)/(x-1))^(3x-1)` is equal to

A

`e^12`

B

`e^-12`

C

`e^4`

D

`e^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( 1 - \frac{4}{x - 1} \right)^{3x - 1} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches infinity, the expression \( 1 - \frac{4}{x - 1} \) approaches \( 1 \). Therefore, we have the form \( 1^{\infty} \), which is an indeterminate form. **Hint**: Recognize that \( 1^{\infty} \) is an indeterminate form that can be transformed using logarithms. ### Step 2: Rewrite the limit using the exponential function We can rewrite the limit in the form of \( e \) by using the property: \[ a^b = e^{b \ln(a)} \] Thus, we can express our limit as: \[ \lim_{x \to \infty} \left( 1 - \frac{4}{x - 1} \right)^{3x - 1} = e^{\lim_{x \to \infty} (3x - 1) \ln\left(1 - \frac{4}{x - 1}\right)} \] **Hint**: Use the property of logarithms to simplify the expression. ### Step 3: Simplify the logarithm Now, we need to find \( \ln\left(1 - \frac{4}{x - 1}\right) \). For small values of \( y \), we can use the approximation \( \ln(1 - y) \approx -y \): \[ \ln\left(1 - \frac{4}{x - 1}\right) \approx -\frac{4}{x - 1} \] Thus, we have: \[ \lim_{x \to \infty} (3x - 1) \ln\left(1 - \frac{4}{x - 1}\right) \approx \lim_{x \to \infty} (3x - 1) \left(-\frac{4}{x - 1}\right) \] **Hint**: Use the approximation for logarithms when \( x \) is large. ### Step 4: Simplify the limit expression Now we simplify the limit: \[ \lim_{x \to \infty} (3x - 1) \left(-\frac{4}{x - 1}\right) = -4 \lim_{x \to \infty} \frac{3x - 1}{x - 1} \] We can simplify \( \frac{3x - 1}{x - 1} \) as follows: \[ \frac{3x - 1}{x - 1} = \frac{3 - \frac{1}{x}}{1 - \frac{1}{x}} \to 3 \quad \text{as } x \to \infty \] Thus, we have: \[ -4 \cdot 3 = -12 \] **Hint**: Factor out the leading terms to find the limit as \( x \) approaches infinity. ### Step 5: Final result Putting it all together, we find: \[ \lim_{x \to \infty} \left( 1 - \frac{4}{x - 1} \right)^{3x - 1} = e^{-12} \] Therefore, the final answer is: \[ \boxed{e^{-12}} \]

To solve the limit \( \lim_{x \to \infty} \left( 1 - \frac{4}{x - 1} \right)^{3x - 1} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches infinity, the expression \( 1 - \frac{4}{x - 1} \) approaches \( 1 \). Therefore, we have the form \( 1^{\infty} \), which is an indeterminate form. **Hint**: Recognize that \( 1^{\infty} \) is an indeterminate form that can be transformed using logarithms. ### Step 2: Rewrite the limit using the exponential function ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) ((x+5)/(x-1))^(x) is equal to

lim_(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

lim_(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

lim_(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr oo) (1-(4)/(x-1))^(3x-1) is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |