Home
Class 12
MATHS
lim(xoto0) x log(e) (sinx) is equal to...

`lim_(xoto0) x log_(e) (sinx)` is equal to

A

-1

B

`log_(e)1`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} x \log_e(\sin x) \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: \[ \sin(0) = 0 \quad \text{and thus} \quad \log_e(\sin(0)) = \log_e(0). \] Since \( \log_e(0) \) approaches \( -\infty \), we have: \[ 0 \cdot (-\infty) \quad \text{which is an indeterminate form of type } 0 \cdot (-\infty). \] ### Step 2: Rewrite the limit To resolve the indeterminate form, we can rewrite the expression: \[ \lim_{x \to 0} x \log_e(\sin x) = \lim_{x \to 0} \frac{\log_e(\sin x)}{\frac{1}{x}}. \] Now, this is in the form \( \frac{-\infty}{\infty} \), which is suitable for applying L'Hôpital's rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( \log_e(\sin x) \) is: \[ \frac{d}{dx} \log_e(\sin x) = \frac{1}{\sin x} \cdot \cos x = \cot x. \] - The derivative of the denominator \( \frac{1}{x} \) is: \[ \frac{d}{dx} \left(\frac{1}{x}\right) = -\frac{1}{x^2}. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\cot x}{-\frac{1}{x^2}} = -\lim_{x \to 0} x^2 \cot x. \] ### Step 4: Simplify the expression We know that \( \cot x = \frac{\cos x}{\sin x} \), so: \[ -\lim_{x \to 0} x^2 \cot x = -\lim_{x \to 0} x^2 \cdot \frac{\cos x}{\sin x} = -\lim_{x \to 0} \frac{x^2 \cos x}{\sin x}. \] As \( x \to 0 \), \( \cos x \to 1 \) and \( \sin x \approx x \), so: \[ -\lim_{x \to 0} \frac{x^2 \cdot 1}{x} = -\lim_{x \to 0} x = 0. \] ### Conclusion Thus, we find that: \[ \lim_{x \to 0} x \log_e(\sin x) = 0. \] ### Final Answer The limit is equal to \( 0 \). ---

To solve the limit \( \lim_{x \to 0} x \log_e(\sin x) \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: \[ \sin(0) = 0 \quad \text{and thus} \quad \log_e(\sin(0)) = \log_e(0). \] Since \( \log_e(0) \) approaches \( -\infty \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

y=(log_(e)x)^(sinx)

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

lim_(xrarr0) (2^(|x|)e^(|x|)-|x|log_(2)2-1)/(xtanx) is equal to

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr0) (x^(2)-x)/(sinx)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xoto0) x log(e) (sinx) is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |