Home
Class 12
MATHS
If lim(x rarr 0) (cos4x+a cos2x+b)/x^4 i...

If `lim_(x rarr 0) (cos4x+a cos2x+b)/x^4` is finite then the value of `a,b` respectively

A

`(5,-4)`

B

`(-5,-4)`

C

`(-4,3)`

D

`(4,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that the limit \[ \lim_{x \to 0} \frac{\cos(4x) + a \cos(2x) + b}{x^4} \] is finite. Let's go through the steps to find \( a \) and \( b \). ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression: \[ \cos(4 \cdot 0) + a \cos(2 \cdot 0) + b = 1 + a + b \] The denominator becomes: \[ 0^4 = 0 \] Thus, we have: \[ \frac{1 + a + b}{0} \] For the limit to be finite, the numerator must also equal zero when \( x \) approaches 0. Therefore, we set: \[ 1 + a + b = 0 \] ### Step 2: Differentiate using L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator separately. The derivative of the numerator \( \cos(4x) + a \cos(2x) + b \) is: \[ -4 \sin(4x) - 2a \sin(2x) \] The derivative of the denominator \( x^4 \) is: \[ 4x^3 \] Thus, we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{-4 \sin(4x) - 2a \sin(2x)}{4x^3} \] ### Step 3: Substitute \( x = 0 \) again Substituting \( x = 0 \) into the new limit gives: \[ \frac{-4 \cdot 0 - 2a \cdot 0}{0} = \frac{0}{0} \] We again have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiating the numerator again gives: \[ -16 \cos(4x) - 2a \cdot 2 \cos(2x) = -16 \cos(4x) - 4a \cos(2x) \] The derivative of the denominator \( 4x^3 \) is: \[ 12x^2 \] So we have: \[ \lim_{x \to 0} \frac{-16 \cos(4x) - 4a \cos(2x)}{12x^2} \] ### Step 5: Substitute \( x = 0 \) again Substituting \( x = 0 \) gives: \[ \frac{-16 \cdot 1 - 4a \cdot 1}{0} = \frac{-16 - 4a}{0} \] For this limit to be finite, we need: \[ -16 - 4a = 0 \] ### Step 6: Solve for \( a \) Solving for \( a \): \[ 4a = -16 \implies a = -4 \] ### Step 7: Substitute \( a \) back to find \( b \) Now we substitute \( a = -4 \) back into the equation \( 1 + a + b = 0 \): \[ 1 - 4 + b = 0 \implies b = 3 \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = -4, \quad b = 3 \]

To solve the limit problem, we need to find the values of \( a \) and \( b \) such that the limit \[ \lim_{x \to 0} \frac{\cos(4x) + a \cos(2x) + b}{x^4} \] is finite. Let's go through the steps to find \( a \) and \( b \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x(cosec x)

lim_(x rarr0)|x|^|cos x|

lim_(h rarr0) (cos(x+h)-cos x)/(h)

lim_(x rarr0)sqrt(x)=

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x rarr0)(1-cos 2x)/(x^(2))

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x to 0) (cos 2x-1)/(cos x-1)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. If lim(x rarr 0) (cos4x+a cos2x+b)/x^4 is finite then the value of a,b...

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |