Home
Class 12
MATHS
The value of lim(xrarr 0) (e^x+log (1+x)...

The value of `lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2)` is equal to

A

0

B

-3

C

-1

D

infinity

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{e^x + \log(1+x) - (1-x)^{-2}}{x^2}, \] we start by substituting \( x = 0 \) into the expression. ### Step 1: Evaluate the limit directly Substituting \( x = 0 \): - \( e^0 = 1 \) - \( \log(1+0) = \log(1) = 0 \) - \( (1-0)^{-2} = 1^{-2} = 1 \) Thus, the numerator becomes: \[ 1 + 0 - 1 = 0. \] The denominator is: \[ 0^2 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. The limit now becomes: \[ \lim_{x \to 0} \frac{d}{dx}(e^x + \log(1+x) - (1-x)^{-2}) \bigg/ \frac{d}{dx}(x^2). \] ### Step 3: Differentiate the numerator and denominator 1. Differentiate the numerator: - The derivative of \( e^x \) is \( e^x \). - The derivative of \( \log(1+x) \) is \( \frac{1}{1+x} \). - The derivative of \( (1-x)^{-2} \) using the chain rule is: \[ -2(1-x)^{-3} \cdot (-1) = \frac{2}{(1-x)^3}. \] So, the derivative of the numerator is: \[ e^x + \frac{1}{1+x} + \frac{2}{(1-x)^3}. \] 2. Differentiate the denominator: - The derivative of \( x^2 \) is \( 2x \). ### Step 4: Rewrite the limit Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x + \frac{1}{1+x} + \frac{2}{(1-x)^3}}{2x}. \] ### Step 5: Substitute \( x = 0 \) again Substituting \( x = 0 \): - \( e^0 = 1 \) - \( \frac{1}{1+0} = 1 \) - \( \frac{2}{(1-0)^3} = 2 \) Thus, the numerator becomes: \[ 1 + 1 + 2 = 4. \] The denominator is: \[ 2 \cdot 0 = 0. \] This still gives us the form \( \frac{4}{0} \), which indicates we need to apply L'Hôpital's Rule again. ### Step 6: Apply L'Hôpital's Rule again Differentiate the numerator and denominator again: 1. Differentiate the numerator: - The derivative of \( e^x \) is \( e^x \). - The derivative of \( \frac{1}{1+x} \) is \( -\frac{1}{(1+x)^2} \). - The derivative of \( \frac{2}{(1-x)^3} \) is \( -\frac{6}{(1-x)^4} \). So, the new derivative of the numerator is: \[ e^x - \frac{1}{(1+x)^2} - \frac{6}{(1-x)^4}. \] 2. Differentiate the denominator: - The derivative of \( 2x \) is \( 2 \). ### Step 7: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{e^x - \frac{1}{(1+x)^2} - \frac{6}{(1-x)^4}}{2}. \] ### Step 8: Substitute \( x = 0 \) again Substituting \( x = 0 \): - \( e^0 = 1 \) - \( -\frac{1}{(1+0)^2} = -1 \) - \( -\frac{6}{(1-0)^4} = -6 \) Thus, the numerator becomes: \[ 1 - 1 - 6 = -6. \] The denominator is: \[ 2. \] ### Final Step: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 0} \frac{-6}{2} = -3. \] Thus, the value of the limit is: \[ \boxed{-3}. \]

To find the limit \[ \lim_{x \to 0} \frac{e^x + \log(1+x) - (1-x)^{-2}}{x^2}, \] we start by substituting \( x = 0 \) into the expression. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(x^3 log x)

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

The value of lim_(xrarre) (logx-1)/(x-e) , is

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

    Text Solution

    |

  2. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  6. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  8. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  15. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  16. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  17. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  18. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  19. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  21. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |