Home
Class 12
MATHS
lim(xrarroo) (sqrt(x^2+2x-1)-x)=...

`lim_(xrarroo) (sqrt(x^2+2x-1)-x)=`

A

`oo`

B

`1//2`

C

`4`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \sqrt{x^2 + 2x - 1} - x \right) \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the limit: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + 2x - 1} - x \right) \] ### Step 2: Multiply and Divide by the Conjugate To simplify the expression, we multiply and divide by the conjugate: \[ \lim_{x \to \infty} \frac{\left( \sqrt{x^2 + 2x - 1} - x \right) \left( \sqrt{x^2 + 2x - 1} + x \right)}{\sqrt{x^2 + 2x - 1} + x} \] This gives us: \[ \lim_{x \to \infty} \frac{(\sqrt{x^2 + 2x - 1})^2 - x^2}{\sqrt{x^2 + 2x - 1} + x} \] ### Step 3: Simplify the Numerator The numerator simplifies to: \[ \lim_{x \to \infty} \frac{x^2 + 2x - 1 - x^2}{\sqrt{x^2 + 2x - 1} + x} = \lim_{x \to \infty} \frac{2x - 1}{\sqrt{x^2 + 2x - 1} + x} \] ### Step 4: Factor Out \(x\) in the Denominator In the denominator, we can factor out \(x\): \[ \sqrt{x^2 + 2x - 1} = x\sqrt{1 + \frac{2}{x} - \frac{1}{x^2}} \] Thus, we rewrite the limit as: \[ \lim_{x \to \infty} \frac{2x - 1}{x\left(\sqrt{1 + \frac{2}{x} - \frac{1}{x^2}} + 1\right)} \] ### Step 5: Simplify the Limit Now, we can simplify the limit: \[ \lim_{x \to \infty} \frac{2 - \frac{1}{x}}{\sqrt{1 + \frac{2}{x} - \frac{1}{x^2}} + 1} \] ### Step 6: Evaluate the Limit As \(x\) approaches infinity, \(\frac{1}{x}\) approaches 0: \[ \lim_{x \to \infty} \frac{2 - 0}{\sqrt{1 + 0 - 0} + 1} = \frac{2}{1 + 1} = \frac{2}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

lim_(xrarroo) (2x)/(1+4x)

Evaluate the following limits : Lim_(x to oo) 2x(sqrt(x^(2)+1)-x)

lim_(xrarroo) (sqrt(x+sqrt(x+sqrt(x)))) - sqrtx

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to