Home
Class 12
MATHS
If l1=lim(xrarr-2)(x+|x|),l2=lim(xrarr-2...

If `l_1=lim_(xrarr-2)(x+|x|),l_2=lim_(xrarr-2)(2x+|x|)` and `l_(3)=lim_(xrarr pi//2)(cosx)/(x-pi//2)`, then

A

`l_1lt l_2lt l_3`

B

`l_2lt l_3 lt l_1`

C

`l_3gt l_2 gt l_1`

D

`l_1lt l_3 lt_2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will evaluate the limits \( L_1 \), \( L_2 \), and \( L_3 \) as given in the question. ### Step 1: Evaluate \( L_1 = \lim_{x \to -2} (x + |x|) \) 1. **Identify the expression**: \[ L_1 = \lim_{x \to -2} (x + |x|) \] 2. **Determine the value of \( |x| \)**: Since \( x \) is approaching \(-2\) (which is negative), we have: \[ |x| = -x \] 3. **Substitute \( |x| \) into the expression**: \[ L_1 = \lim_{x \to -2} (x - x) = \lim_{x \to -2} 0 = 0 \] ### Step 2: Evaluate \( L_2 = \lim_{x \to -2} (2x + |x|) \) 1. **Identify the expression**: \[ L_2 = \lim_{x \to -2} (2x + |x|) \] 2. **Determine the value of \( |x| \)**: Again, since \( x \) is negative: \[ |x| = -x \] 3. **Substitute \( |x| \) into the expression**: \[ L_2 = \lim_{x \to -2} (2x - x) = \lim_{x \to -2} x \] 4. **Evaluate the limit**: \[ L_2 = -2 \] ### Step 3: Evaluate \( L_3 = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} \) 1. **Identify the expression**: \[ L_3 = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} \] 2. **Check the form of the limit**: - As \( x \to \frac{\pi}{2} \), \( \cos x \to 0 \) and \( x - \frac{\pi}{2} \to 0 \). This is a \( \frac{0}{0} \) indeterminate form. 3. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: - Derivative of \( \cos x \) is \( -\sin x \). - Derivative of \( x - \frac{\pi}{2} \) is \( 1 \). 4. **Rewrite the limit using L'Hôpital's Rule**: \[ L_3 = \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{1} \] 5. **Evaluate the limit**: \[ L_3 = -\sin\left(\frac{\pi}{2}\right) = -1 \] ### Summary of Results - \( L_1 = 0 \) - \( L_2 = -2 \) - \( L_3 = -1 \) ### Step 4: Compare the values of \( L_1, L_2, L_3 \) - \( L_2 = -2 \) - \( L_3 = -1 \) - \( L_1 = 0 \) Thus, we can conclude: \[ L_2 < L_3 < L_1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr2)(x^3-8)/(sin(x-2))

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

lim_(xrarr4)(2x+3)/(x-2)

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

lim_(xrarr3) (x^(2)-9)/(x-3)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. lim(xrarroo) (sqrt(x^2+2x-1)-x)=

    Text Solution

    |

  2. If l1=lim(xrarr-2)(x+|x|),l2=lim(xrarr-2)(2x+|x|) and l(3)=lim(xrarr p...

    Text Solution

    |

  3. lim(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

    Text Solution

    |

  4. lim(xrarr0) x^2sin.(pi)/(x), is

    Text Solution

    |

  5. ("lim")(xvec2)(((x^3-4x)/(x^3-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(...

    Text Solution

    |

  6. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  7. If lim(xto oo)((x^(2)+1)/(x+1)-ax-b)=2 find the values of a and b.

    Text Solution

    |

  8. Evaluate the following limits : Lim(x to oo) (sqrt(x^(2)+1)-root3(x^...

    Text Solution

    |

  9. lim(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

    Text Solution

    |

  10. Write the value of (lim)(x->-oo)(3x+sqrt(9x^2-x))

    Text Solution

    |

  11. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  12. The value of underset(xto2)lim(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))...

    Text Solution

    |

  13. value of lim(x->0)(1-cos^3x)/(xsinx*cosx) is

    Text Solution

    |

  14. lim(xrarr1)(sqrt1-cos2(x-1))/(x-1), is

    Text Solution

    |

  15. Evaluate the following limits (i) lim(x to (pi)/(2)) tan^(2) x [sqr...

    Text Solution

    |

  16. The value of lim(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

    Text Solution

    |

  17. The value of lim (xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

    Text Solution

    |

  18. The value of underset(xto1)lim(2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  19. The value of lim(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

    Text Solution

    |

  20. lim(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

    Text Solution

    |