Home
Class 12
MATHS
value of lim(x->0)(1-cos^3x)/(xsinx*cosx...

value of `lim_(x->0)(1-cos^3x)/(xsinx*cosx)` is

A

`2//5`

B

`3//5`

C

`3//2`

D

`3//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{1 - \cos^3 x}{x \sin x \cos x}, \] we start by substituting \(x = 0\): \[ \frac{1 - \cos^3(0)}{0 \cdot \sin(0) \cdot \cos(0)} = \frac{1 - 1}{0} = \frac{0}{0}. \] Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule or manipulate the expression. ### Step 1: Use the identity for \(1 - \cos^3 x\) We can use the identity \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\) with \(a = 1\) and \(b = \cos x\): \[ 1 - \cos^3 x = (1 - \cos x)(1 + \cos^2 x + \cos x). \] ### Step 2: Substitute into the limit Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos^2 x + \cos x)}{x \sin x \cos x}. \] ### Step 3: Split the limit We can split the limit into two parts: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \lim_{x \to 0} \frac{1 + \cos^2 x + \cos x}{\sin x \cos x}. \] ### Step 4: Evaluate the first limit Using the known limit: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}, \] ### Step 5: Evaluate the second limit For the second limit, we know: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \cos(0) = 1. \] Thus, \[ \lim_{x \to 0} \frac{1 + \cos^2 x + \cos x}{\sin x \cos x} = \frac{1 + 1 + 1}{1 \cdot 1} = 3. \] ### Step 6: Combine the results Now we can combine the results of both limits: \[ \lim_{x \to 0} \frac{1 - \cos^3 x}{x \sin x \cos x} = \frac{1}{2} \cdot 3 = \frac{3}{2}. \] Thus, the final answer is: \[ \boxed{\frac{3}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

lim_(x->0)(1-cos2x+tan^2x)/(xsinx)

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of (lim)x->0(sqrt(1-cos"x"^2))/(1-cosx) is a. 1/2 b. 2 c. sqrt(2) d. none of these

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

(lim)_(x->0)(cos2x-1)/(cosx-1)

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of : lim_(x rarr0)(cosx-1)/(x) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  2. The value of underset(xto2)lim(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))...

    Text Solution

    |

  3. value of lim(x->0)(1-cos^3x)/(xsinx*cosx) is

    Text Solution

    |

  4. lim(xrarr1)(sqrt1-cos2(x-1))/(x-1), is

    Text Solution

    |

  5. Evaluate the following limits (i) lim(x to (pi)/(2)) tan^(2) x [sqr...

    Text Solution

    |

  6. The value of lim(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

    Text Solution

    |

  7. The value of lim (xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

    Text Solution

    |

  8. The value of underset(xto1)lim(2-x)^(tan((pix)/(2))) is

    Text Solution

    |

  9. The value of lim(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

    Text Solution

    |

  10. lim(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

    Text Solution

    |

  11. The value of lim(xrarr0) ((1+tanx)/(1+sin x))^(cosec x) , is

    Text Solution

    |

  12. lim(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

    Text Solution

    |

  13. Evaluate: ("lim")(n→oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)(x/(x+2))]

    Text Solution

    |

  14. The value of lim(x->0) ( int0 ^ (x^2) cost^2 dt)/( xsin x) is

    Text Solution

    |

  15. ("lim")(xvec0)(1n(1+2h)-21 n(1+h))/(h^2)=

    Text Solution

    |

  16. The value of lim(xrarr1)(log5 5x)^(logx5) , is

    Text Solution

    |

  17. The value of lim(xrarr1)(log2 2x)^(logx5), is

    Text Solution

    |

  18. lim(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n...

    Text Solution

    |

  19. If 0lt xlty, then lim(xrarroo) (y^n+x^n)^(1//n) is equal to

    Text Solution

    |

  20. Evaluate the limit: ("lim")(xvecoo)[sqrt(a^2x^2+a x+1)-sqrt(a^2x^2+1)]

    Text Solution

    |