Home
Class 12
MATHS
The value of lim(xrarr 0) (1-cos(1-cos ...

The value of ` lim_(xrarr 0) (1-cos(1-cos x))/(x^4)` is equal to

A

`(1)(8)`

B

`(1)/(2)`

C

`(1)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} \), we will follow these steps: ### Step 1: Identify the limit form First, we need to evaluate the limit as \( x \) approaches 0. We notice that both the numerator and denominator approach 0, which indicates that we have an indeterminate form of type \( \frac{0}{0} \). ### Step 2: Use the identity for cosine We can use the trigonometric identity for \( 1 - \cos y \): \[ 1 - \cos y \approx \frac{y^2}{2} \quad \text{as } y \to 0. \] Here, we will set \( y = 1 - \cos x \). ### Step 3: Find \( 1 - \cos x \) as \( x \to 0 \) Using the same identity, we find: \[ 1 - \cos x \approx \frac{x^2}{2} \quad \text{as } x \to 0. \] Thus, as \( x \to 0 \): \[ y = 1 - \cos x \approx \frac{x^2}{2}. \] ### Step 4: Substitute \( y \) into the limit Now substituting \( y \) into our limit: \[ \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{x^2}{2}\right)}{x^4}. \] ### Step 5: Apply the cosine identity again Now, we apply the cosine identity again: \[ 1 - \cos\left(\frac{x^2}{2}\right) \approx \frac{\left(\frac{x^2}{2}\right)^2}{2} = \frac{x^4}{8} \quad \text{as } x \to 0. \] ### Step 6: Substitute back into the limit Now substituting this back into our limit: \[ \lim_{x \to 0} \frac{\frac{x^4}{8}}{x^4} = \lim_{x \to 0} \frac{1}{8} = \frac{1}{8}. \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{1}{8}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

lim_(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

lim_(x rarr0)(1/x)^(1-cos x)

The value of lim_(xrarr0)(16-16 cos (1-cos x))/(x^(4)) is _____________

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

lim_(xrarr0) (cos ec x -cot x)

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :