Home
Class 12
MATHS
lim(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2...

`lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)`

A

`e^2`

B

e

C

`e^-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{5x^2 + 1}{3x^2 + 1} \right)^{\frac{1}{x^2}} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), both the numerator and denominator approach 1: \[ \frac{5x^2 + 1}{3x^2 + 1} \to \frac{1}{1} = 1 \] Thus, we have the indeterminate form \( 1^{\infty} \). **Hint:** Recognize indeterminate forms like \( 1^{\infty} \) can be resolved using logarithmic properties. ### Step 2: Rewrite the limit using the exponential function We can rewrite the limit in a form that allows us to use the exponential function: \[ \lim_{x \to 0} \left( \frac{5x^2 + 1}{3x^2 + 1} \right)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{1}{x^2} \left( \frac{5x^2 + 1}{3x^2 + 1} - 1 \right)} \] **Hint:** Use the property \( a^b = e^{b \ln(a)} \) to transform the limit. ### Step 3: Simplify the expression inside the limit Now we need to simplify \( \frac{5x^2 + 1}{3x^2 + 1} - 1 \): \[ \frac{5x^2 + 1}{3x^2 + 1} - 1 = \frac{(5x^2 + 1) - (3x^2 + 1)}{3x^2 + 1} = \frac{5x^2 - 3x^2}{3x^2 + 1} = \frac{2x^2}{3x^2 + 1} \] **Hint:** Combine fractions by finding a common denominator. ### Step 4: Substitute back into the limit Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{1}{x^2} \left( \frac{2x^2}{3x^2 + 1} \right) = \lim_{x \to 0} \frac{2}{3x^2 + 1} \] **Hint:** Simplify the limit by substituting \( x = 0 \). ### Step 5: Evaluate the limit Now evaluate the limit: \[ \lim_{x \to 0} \frac{2}{3x^2 + 1} = \frac{2}{3(0) + 1} = 2 \] **Hint:** Direct substitution works well when the limit is not indeterminate. ### Step 6: Final result Now substitute back into the exponential function: \[ e^{\lim_{x \to 0} \frac{1}{x^2} \left( \frac{5x^2 + 1}{3x^2 + 1} - 1 \right)} = e^2 \] Thus, the final answer is: \[ \lim_{x \to 0} \left( \frac{5x^2 + 1}{3x^2 + 1} \right)^{\frac{1}{x^2}} = e^2 \] ### Final Answer \[ \boxed{e^2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

lim_(x rarr0)(2x^2-3x)/x

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(x-sin x)/(tan^(2)x)

lim_(x->0)(e^(5x) - 1)/(3x)

lim_(x rarr0)(1-cos 2x)/(x^(2))

("lim")_(xvec0)((1+5x^2)/(1+3x^2))^1//x^2=____

lim_(x rarr0)(sin^2x)/(1-cosx)

Evaluate the following limits : Lim_( x to 0) ((1+5x^(2))/(1+3x^(2)))^(x^(1/2))