Home
Class 12
MATHS
The value of lim(x->0) ( int0 ^ (x^2) co...

The value of `lim_(x->0) ( int_0 ^ (x^2) cost^2 dt)/( xsin x)` is

A

`3//2`

B

1

C

-1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

Evaluate: lim_(x->0)(x-(int_0^xcost^2dt))/(x^3-6x)

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :