Home
Class 12
MATHS
The value of lim(xrarr1)(log5 5x)^(logx5...

The value of `lim_(xrarr1)(log_5 5x)^(log_x5)` , is

A

1

B

e

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \left( \log_5 (5x) \right)^{\log_x 5} \), we can follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit: \[ \lim_{x \to 1} \left( \log_5 (5x) \right)^{\log_x 5} \] ### Step 2: Use Logarithmic Properties Using the change of base formula for logarithms, we can express \( \log_x 5 \) as: \[ \log_x 5 = \frac{\log_e 5}{\log_e x} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \left( \log_5 (5x) \right)^{\frac{\log_e 5}{\log_e x}} \] ### Step 3: Simplify \( \log_5 (5x) \) Now, we simplify \( \log_5 (5x) \): \[ \log_5 (5x) = \log_5 5 + \log_5 x = 1 + \log_5 x \] So, we can substitute this back into our limit: \[ \lim_{x \to 1} \left( 1 + \log_5 x \right)^{\frac{\log_e 5}{\log_e x}} \] ### Step 4: Identify the Indeterminate Form As \( x \to 1 \), \( \log_5 x \to 0 \) and \( \log_e x \to 0 \). Therefore, we have the form \( 1^{\infty} \), which is an indeterminate form. ### Step 5: Convert to Exponential Form To resolve this indeterminate form, we can use the fact that: \[ a^{b} = e^{b \ln a} \] Thus, we rewrite our limit as: \[ \lim_{x \to 1} e^{\frac{\log_e 5}{\log_e x} \ln(1 + \log_5 x)} \] ### Step 6: Simplify the Exponent Now we need to find: \[ \lim_{x \to 1} \frac{\log_e 5}{\log_e x} \ln(1 + \log_5 x) \] Using the approximation \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln(1 + \log_5 x) \approx \log_5 x \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{\log_e 5 \cdot \log_5 x}{\log_e x} \] ### Step 7: Change of Base for \( \log_5 x \) Using the change of base formula again: \[ \log_5 x = \frac{\log_e x}{\log_e 5} \] Substituting this into our limit gives: \[ \lim_{x \to 1} \frac{\log_e 5 \cdot \frac{\log_e x}{\log_e 5}}{\log_e x} = \lim_{x \to 1} 1 = 1 \] ### Step 8: Final Result Thus, we have: \[ \lim_{x \to 1} e^{1} = e \] ### Conclusion The value of the limit is: \[ \boxed{e} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(log_2 2x)^(log_x5) , is

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr1) (logx)/(sin pi x) , is

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

The value of lim_(x to 0) (log (5 + x) - log (5 - x))/(x) equals

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to