Home
Class 12
MATHS
The value of lim(xrarr1)(log2 2x)^(logx...

The value of `lim_(xrarr1)(log_2 2x)^(log_x5)`, is

A

`5//2`

B

`e^log2 5`

C

`log 5//log 2`

D

`e^log ar 5^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(log_5 5x)^(log_x5) , is

lim_(xrarr0)(x^3 log x)

The value of : lim_(xrarroo)("log" x)/(x) is:

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of lim_(xrarr1) (logx)/(sin pi x) , is

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(xrarre) (log_(e)x-1)/(|x-e|) is

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to