Home
Class 12
MATHS
If 0lt xlty, then lim(xrarroo) (y^n+x^n)...

If `0lt xlty`, then `lim_(xrarroo) (y^n+x^n)^(1//n)` is equal to

A

e

B

x

C

y

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} (y^n + x^n)^{1/n} \) where \( 0 < y < x \), we can follow these steps: ### Step-by-Step Solution 1. **Identify the Limit Expression**: We start with the expression: \[ L = \lim_{x \to \infty} (y^n + x^n)^{1/n} \] 2. **Factor Out \( x^n \)**: Since \( x \) is approaching infinity and \( y \) is a constant, we can factor \( x^n \) out of the expression inside the limit: \[ L = \lim_{x \to \infty} (x^n(1 + \frac{y^n}{x^n}))^{1/n} \] 3. **Simplify the Expression**: We can simplify the expression: \[ L = \lim_{x \to \infty} (x^n)^{1/n} \cdot (1 + \frac{y^n}{x^n})^{1/n} \] This simplifies to: \[ L = \lim_{x \to \infty} x \cdot (1 + \frac{y^n}{x^n})^{1/n} \] 4. **Evaluate the Limit of the Second Part**: As \( x \to \infty \), \( \frac{y^n}{x^n} \) approaches 0. Therefore: \[ (1 + \frac{y^n}{x^n})^{1/n} \to (1 + 0)^{1/n} = 1 \] 5. **Combine the Results**: Now we can combine the results: \[ L = \lim_{x \to \infty} x \cdot 1 = \lim_{x \to \infty} x = \infty \] ### Final Result Thus, the limit is: \[ L = \infty \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

The value of lim_(xrarroo) x^(1//x) equals

If lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then the vlaue of (m)/(n) is

If 0 lt alpha lt beta then lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n)) is equal to