Home
Class 12
MATHS
The value of lim(xrarr0) (x(5^x-1))/(1-c...

The value of `lim_(xrarr0) (x(5^x-1))/(1-cos x)`, is

A

`5log2`

B

`2log 5`

C

`(1)/(2)log 5`

D

`(1)/(5) log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x(5^x - 1)}{1 - \cos x} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ L = \lim_{x \to 0} \frac{x(5^x - 1)}{1 - \cos x} \] ### Step 2: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0. Therefore, we can apply L'Hôpital's Rule, which states that if the limit results in an indeterminate form \( \frac{0}{0} \), we can take the derivative of the numerator and the derivative of the denominator. ### Step 3: Differentiate the numerator and denominator The derivative of the numerator \( x(5^x - 1) \) using the product rule is: \[ \frac{d}{dx}[x(5^x - 1)] = (5^x - 1) + x \cdot 5^x \ln(5) \] The derivative of the denominator \( 1 - \cos x \) is: \[ \frac{d}{dx}[1 - \cos x] = \sin x \] ### Step 4: Rewrite the limit with derivatives Now we can rewrite the limit using the derivatives: \[ L = \lim_{x \to 0} \frac{(5^x - 1) + x \cdot 5^x \ln(5)}{\sin x} \] ### Step 5: Evaluate the limit As \( x \to 0 \): - \( 5^x - 1 \) approaches \( 0 \) - \( x \cdot 5^x \ln(5) \) approaches \( 0 \) - \( \sin x \) approaches \( 0 \) Thus, we can apply L'Hôpital's Rule again. We differentiate the numerator and denominator again. The derivative of the numerator: \[ \frac{d}{dx}[(5^x - 1) + x \cdot 5^x \ln(5)] = 5^x \ln(5) + (5^x \ln(5) + x \cdot 5^x \ln^2(5)) \] The derivative of the denominator \( \sin x \) is \( \cos x \). ### Step 6: Rewrite the limit again Now we have: \[ L = \lim_{x \to 0} \frac{5^x \ln(5) + 5^x \ln(5) + x \cdot 5^x \ln^2(5)}{\cos x} \] ### Step 7: Evaluate the limit as \( x \to 0 \) As \( x \to 0 \): - \( 5^x \) approaches \( 1 \) - \( \cos x \) approaches \( 1 \) Thus, \[ L = \frac{2 \ln(5)}{1} = 2 \ln(5) \] ### Final Answer The value of the limit is: \[ \lim_{x \to 0} \frac{x(5^x - 1)}{1 - \cos x} = 2 \ln(5) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0)(1)/(x^(18))(1-cos((x^(3))/(3))-cos((x^(6))/(6))+cos((x^(3))/(3)).cos((x^(6))/(6))= lambda^(2) , then the value of 900lambda is equal to ("here, "lambda gt 0)

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)