Home
Class 12
MATHS
The value of lim(xrarroo) {(x^2sin((1)/(...

The value of `lim_(xrarroo) {(x^2sin((1)/(x))-x)/(1-|x|)}`, is

A

0

B

1

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{x^2 \sin\left(\frac{1}{x}\right) - x}{1 - |x|} \), we will follow these steps: ### Step 1: Analyze the limit as \( x \to \infty \) As \( x \) approaches infinity, \( |x| = x \). Therefore, we can rewrite the limit as: \[ \lim_{x \to \infty} \frac{x^2 \sin\left(\frac{1}{x}\right) - x}{1 - x} \] ### Step 2: Simplify the expression We can factor out \( x \) from the numerator: \[ = \lim_{x \to \infty} \frac{x\left(x \sin\left(\frac{1}{x}\right) - 1\right)}{1 - x} \] ### Step 3: Rewrite the limit Now, we can rewrite the limit as: \[ = \lim_{x \to \infty} \frac{x \sin\left(\frac{1}{x}\right) - 1}{\frac{1 - x}{x}} = \lim_{x \to \infty} \frac{x \sin\left(\frac{1}{x}\right) - 1}{-\left(1 - \frac{1}{x}\right)} \] ### Step 4: Evaluate \( \sin\left(\frac{1}{x}\right) \) As \( x \to \infty \), \( \frac{1}{x} \to 0 \). We can use the small angle approximation for sine: \[ \sin\left(\frac{1}{x}\right) \approx \frac{1}{x} \] Thus, \[ x \sin\left(\frac{1}{x}\right) \approx x \cdot \frac{1}{x} = 1 \] ### Step 5: Substitute back into the limit Now substituting this back, we get: \[ = \lim_{x \to \infty} \frac{1 - 1}{-\left(1 - \frac{1}{x}\right)} = \lim_{x \to \infty} \frac{0}{-1} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

lim_(xrarroo) (sinx)/(x)=?

The value of lim_(xrarroo) x^(1//x) equals

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) a^xsin ((b)/(a^x)) is (agt1)

The value of : lim_(xrarroo)("log" x)/(x) is:

The value of lim_(xrarroo)((x+6)/(x+1))^(x+4) , is