Home
Class 12
MATHS
If f(x)=((x^2+5x+3)/(x^2+x+2))^x then li...

If `f(x)=((x^2+5x+3)/(x^2+x+2))^x` then `lim_(xrarroo)f(x)` is equal to

A

`e^4`

B

`e^3`

C

`e^2`

D

`24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} f(x) \) where \( f(x) = \left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \left( \frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x \] ### Step 2: Factor out the highest power of \( x \) To simplify the expression, we factor out \( x^2 \) from both the numerator and the denominator: \[ f(x) = \left( \frac{x^2(1 + \frac{5}{x} + \frac{3}{x^2})}{x^2(1 + \frac{1}{x} + \frac{2}{x^2})} \right)^x = \left( \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} \right)^x \] ### Step 3: Evaluate the limit as \( x \to \infty \) As \( x \) approaches infinity, the terms \( \frac{5}{x} \), \( \frac{3}{x^2} \), \( \frac{1}{x} \), and \( \frac{2}{x^2} \) approach 0. Therefore, we have: \[ \lim_{x \to \infty} f(x) = \left( \frac{1 + 0 + 0}{1 + 0 + 0} \right)^x = 1^x \] This is an indeterminate form of \( 1^\infty \). ### Step 4: Use the exponential limit form To resolve the \( 1^\infty \) form, we can use the formula: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) \cdot (f(x) - 1)} \] In our case, \( g(x) = x \) and \( f(x) = \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} \). ### Step 5: Calculate \( f(x) - 1 \) We need to find: \[ f(x) - 1 = \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} - 1 = \frac{(1 + \frac{5}{x} + \frac{3}{x^2}) - (1 + \frac{1}{x} + \frac{2}{x^2})}{1 + \frac{1}{x} + \frac{2}{x^2}} \] Simplifying the numerator: \[ = \frac{\frac{5}{x} + \frac{3}{x^2} - \frac{1}{x} - \frac{2}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} = \frac{\frac{4}{x} + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} \] ### Step 6: Multiply by \( g(x) \) Now, we multiply by \( g(x) = x \): \[ x \cdot (f(x) - 1) = x \cdot \frac{\frac{4}{x} + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} = \frac{4 + \frac{1}{x}}{1 + \frac{1}{x} + \frac{2}{x^2}} \] ### Step 7: Take the limit as \( x \to \infty \) Taking the limit: \[ \lim_{x \to \infty} \frac{4 + \frac{1}{x}}{1 + \frac{1}{x} + \frac{2}{x^2}} = \frac{4 + 0}{1 + 0 + 0} = 4 \] ### Step 8: Final result Thus, we have: \[ \lim_{x \to \infty} f(x) = e^{4} \] ### Conclusion The limit is: \[ \lim_{x \to \infty} f(x) = e^4 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

The value of lim_(xrarroo) x^(1//x) equals

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

f(x)=(3x^2+a x+a+1)/(x^2+x-2) and lim_(x->-2)f(x) exists. Then the value of (a-4) is__________

If f(x) = (x^(2)-9)/(x-3) , find it Lim_(x to 3) f(x) exists .

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is