Home
Class 12
MATHS
The value of underset(xto0)lim(1+sinx-co...

The value of `underset(xto0)lim(1+sinx-cosx+log(1-x))/(x^(3))` is

A

`1//2`

B

`-1//2`

C

`0`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

Evaluate underset(xto0)lim(1-cosmx)/(1-cosnx).

The value of lim_(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is 1/2 (b) -1/2 (c) 0 (d) none of these

The value of ("lim")_(xvec0)(1+sinx-cosx+"log"(1-x))/(x^3)i s 1/2 (b) -1/2 (c) 0 (d) none of these

Evaluate underset(xto0)lim(5sinx-7sin2x+3sin3x)/(x^(2)sinx).

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

Evaluate : underset( x to 0 ) lim (x) ^((1)/(log x))

The value of lim_(xto0)(1/(x^(2))-cotx) is

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).