Home
Class 12
MATHS
lim(xrarroo) ((x+2)/(x+1))^(x+3) is equa...

`lim_(xrarroo) ((x+2)/(x+1))^(x+3)` is equal to

A

1

B

e

C

`e^2`

D

`e^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} \), we can follow these steps: ### Step 1: Identify the Form We first observe that as \( x \to \infty \), both the numerator and denominator approach infinity, leading to a form of \( \frac{\infty}{\infty} \). This means we can simplify the expression. ### Step 2: Simplify the Base We simplify the base of the exponent: \[ \frac{x+2}{x+1} = \frac{x(1 + \frac{2}{x})}{x(1 + \frac{1}{x})} = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}}. \] As \( x \to \infty \), \( \frac{2}{x} \to 0 \) and \( \frac{1}{x} \to 0 \), so: \[ \frac{x+2}{x+1} \to \frac{1 + 0}{1 + 0} = 1. \] ### Step 3: Rewrite the Limit Now we rewrite the limit in a form suitable for applying the exponential limit: \[ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} = \lim_{x \to \infty} e^{(x+3) \ln\left(\frac{x+2}{x+1}\right)}. \] ### Step 4: Find the Logarithm Next, we need to find \( \ln\left(\frac{x+2}{x+1}\right) \): \[ \ln\left(\frac{x+2}{x+1}\right) = \ln(x+2) - \ln(x+1). \] Using the property of logarithms: \[ \ln(x+2) - \ln(x+1) = \ln\left(\frac{x+2}{x+1}\right). \] ### Step 5: Apply L'Hôpital's Rule We can analyze the limit of \( (x+3) \ln\left(\frac{x+2}{x+1}\right) \): \[ \lim_{x \to \infty} (x+3) \left( \ln\left(1 + \frac{1}{x+1}\right) \right). \] Using the approximation \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln\left(1 + \frac{1}{x+1}\right) \approx \frac{1}{x+1}. \] Thus, \[ \lim_{x \to \infty} (x+3) \cdot \frac{1}{x+1} = \lim_{x \to \infty} \frac{x+3}{x+1} = 1. \] ### Step 6: Final Limit Calculation Now substituting back, we have: \[ \lim_{x \to \infty} e^{(x+3) \ln\left(\frac{x+2}{x+1}\right)} = e^{1} = e. \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{x+3} = e. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo)((lnx)^(2))/(2+3x^(2)) is equal to

For x in R , lim_(xrarroo)((x-3)/(x+2))^x is equal to (a) e (b) e^(-1) (c) e^(-5) (d) e^5

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

The value of lim_(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

The value of lim_(xrarroo)((x+6)/(x+1))^(x+4) , is