Home
Class 12
MATHS
The value of lim(xrarroo) (sinx)/(x), is...

The value of `lim_(xrarroo) (sinx)/(x)`, is

A

1

B

0

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \( \lim_{x \to \infty} \frac{\sin x}{x} \), we can follow these steps: ### Step 1: Understand the behavior of \( \sin x \) The function \( \sin x \) oscillates between -1 and 1 for all values of \( x \). Therefore, we can say: \[ -1 \leq \sin x \leq 1 \] ### Step 2: Set up the limit We are interested in the limit: \[ \lim_{x \to \infty} \frac{\sin x}{x} \] ### Step 3: Apply the Squeeze Theorem Since \( \sin x \) is bounded, we can use the bounds of \( \sin x \) to create inequalities: \[ -1 \leq \sin x \leq 1 \] Dividing the entire inequality by \( x \) (which is positive as \( x \to \infty \)): \[ -\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x} \] ### Step 4: Evaluate the limits of the bounding functions Now, we take the limit of the bounding functions as \( x \) approaches infinity: \[ \lim_{x \to \infty} -\frac{1}{x} = 0 \] \[ \lim_{x \to \infty} \frac{1}{x} = 0 \] ### Step 5: Apply the Squeeze Theorem Since both bounding limits converge to 0, by the Squeeze Theorem, we conclude that: \[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarr0) (sinx)/(x)= ?

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is

lim_(xrarroo) (2x)/(1+4x)

The value of : lim_(xrarroo)("log" x)/(x) is:

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

The value of lim_(xrarroo) {(x^2sin((1)/(x))-x)/(1-|x|)} , is

The value of lim_(xrarroo) a^xsin ((b)/(a^x)) is (agt1)

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is