Home
Class 12
MATHS
The value of lim(xrarroo)((x+6)/(x+1))^(...

The value of `lim_(xrarroo)((x+6)/(x+1))^(x+4)`, is

A

e

B

`e^2`

C

`e^4`

D

` e^5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \frac{x+6}{x+1} \right)^{x+4} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ \frac{x+6}{x+1} = \frac{x(1 + \frac{6}{x})}{x(1 + \frac{1}{x})} = \frac{1 + \frac{6}{x}}{1 + \frac{1}{x}} \] Thus, we can express our limit as: \[ \lim_{x \to \infty} \left( \frac{1 + \frac{6}{x}}{1 + \frac{1}{x}} \right)^{x+4} \] ### Step 2: Evaluate the limit of the base As \( x \to \infty \), both \( \frac{6}{x} \) and \( \frac{1}{x} \) approach 0. Therefore: \[ \frac{1 + \frac{6}{x}}{1 + \frac{1}{x}} \to \frac{1 + 0}{1 + 0} = 1 \] This means we are dealing with an indeterminate form \( 1^{\infty} \). ### Step 3: Apply the exponential limit property To resolve the indeterminate form \( 1^{\infty} \), we can use the property: \[ a^b = e^{b \ln a} \] Thus, we rewrite our limit as: \[ \lim_{x \to \infty} \left( \frac{1 + \frac{6}{x}}{1 + \frac{1}{x}} \right)^{x+4} = e^{\lim_{x \to \infty} (x+4) \ln\left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right)} \] ### Step 4: Simplify the logarithm Next, we need to simplify the logarithm: \[ \ln\left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right) = \ln(1 + \frac{6}{x}) - \ln(1 + \frac{1}{x}) \] Using the approximation \( \ln(1 + u) \approx u \) for small \( u \): \[ \ln(1 + \frac{6}{x}) \approx \frac{6}{x}, \quad \ln(1 + \frac{1}{x}) \approx \frac{1}{x} \] Thus: \[ \ln\left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right) \approx \frac{6}{x} - \frac{1}{x} = \frac{5}{x} \] ### Step 5: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to \infty} (x+4) \ln\left(\frac{1 + \frac{6}{x}}{1 + \frac{1}{x}}\right) \approx \lim_{x \to \infty} (x+4) \cdot \frac{5}{x} = \lim_{x \to \infty} \left(5 + \frac{20}{x}\right) = 5 \] ### Step 6: Final result Thus, we have: \[ \lim_{x \to \infty} \left( \frac{x+6}{x+1} \right)^{x+4} = e^5 \] ### Conclusion The value of the limit is: \[ \boxed{e^5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

The value of lim_(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo) (sinx)/(x) , is

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

The value of lim_(xrarroo)((lnx)^(2))/(2+3x^(2)) is equal to

The value of : lim_(xrarroo)("log" x)/(x) is:

The value of lim_(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(xrarroo) ((x+3)/(x-1))^(x+1) is

    Text Solution

    |

  2. The value of lim(xrarroo) (sinx)/(x), is

    Text Solution

    |

  3. The value of lim(xrarroo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  4. lim(xrarr0) (sin4x)/(1-sqrt(1-x)), is

    Text Solution

    |

  5. If G(x)=-sqrt(25-x). Then lim(xrarr1) (G(x)-G(1))/(x-1) has the value

    Text Solution

    |

  6. lim(xrarr0^-)(sinx)/(sqrt(x)) is equal to

    Text Solution

    |

  7. lim(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

    Text Solution

    |

  8. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  9. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  10. lim(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

    Text Solution

    |

  11. The value of lim(xrarroo) ((x-1)/(x+1))^(x), is

    Text Solution

    |

  12. Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt(x -> 3) (f(x)-f(3)) / ...

    Text Solution

    |

  13. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  14. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  15. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  16. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  17. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  18. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  19. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  20. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |