Home
Class 12
MATHS
If G(x)=-sqrt(25-x). Then lim(xrarr1) (G...

If `G(x)=-sqrt(25-x)`. Then `lim_(xrarr1) (G(x)-G(1))/(x-1)` has the value

A

`(1)/(sqrt(24))`

B

`(1)/(5)`

C

`-sqrt(24)`

D

`-1//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we will follow the procedure outlined in the video transcript. ### Step 1: Define the function and the limit We have the function: \[ G(x) = -\sqrt{25 - x} \] We need to evaluate the limit: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} \] ### Step 2: Calculate \( G(1) \) First, we find \( G(1) \): \[ G(1) = -\sqrt{25 - 1} = -\sqrt{24} \] ### Step 3: Substitute into the limit Now, substituting \( G(1) \) into the limit gives: \[ \lim_{x \to 1} \frac{G(x) - (-\sqrt{24})}{x - 1} = \lim_{x \to 1} \frac{G(x) + \sqrt{24}}{x - 1} \] ### Step 4: Check for indeterminate form If we substitute \( x = 1 \) directly into the limit: \[ G(1) + \sqrt{24} = -\sqrt{24} + \sqrt{24} = 0 \] And the denominator becomes \( 1 - 1 = 0 \). Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 5: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to 1} \frac{G'(x)}{1} \] We need to find \( G'(x) \). ### Step 6: Differentiate \( G(x) \) To differentiate \( G(x) \): \[ G(x) = -\sqrt{25 - x} = -(25 - x)^{1/2} \] Using the chain rule: \[ G'(x) = -\frac{1}{2}(25 - x)^{-1/2} \cdot (-1) = \frac{1}{2\sqrt{25 - x}} \] ### Step 7: Evaluate \( G'(1) \) Now we evaluate \( G'(1) \): \[ G'(1) = \frac{1}{2\sqrt{25 - 1}} = \frac{1}{2\sqrt{24}} = \frac{1}{2 \cdot 2\sqrt{6}} = \frac{1}{4\sqrt{6}} \] ### Step 8: Conclusion Thus, the value of the limit is: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = G'(1) = \frac{1}{4\sqrt{6}} \] ### Final Answer: The value of the limit is: \[ \frac{1}{4\sqrt{6}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

lim_(xrarr0) (3sqrt(1+x-1))/(x)

If G(x)=-sqrt(25-x^2),t h e n lim_(x->1)(G(x)-G(1))/(x-1)i s (a) 1/(24) (b) 1/5 (c) -sqrt(24) (d) none of these

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_(xrarr1)(sqrt1-cos2(x-1))/(x-1) , is

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(xrarroo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  2. lim(xrarr0) (sin4x)/(1-sqrt(1-x)), is

    Text Solution

    |

  3. If G(x)=-sqrt(25-x). Then lim(xrarr1) (G(x)-G(1))/(x-1) has the value

    Text Solution

    |

  4. lim(xrarr0^-)(sinx)/(sqrt(x)) is equal to

    Text Solution

    |

  5. lim(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

    Text Solution

    |

  6. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  7. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  8. lim(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

    Text Solution

    |

  9. The value of lim(xrarroo) ((x-1)/(x+1))^(x), is

    Text Solution

    |

  10. Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt(x -> 3) (f(x)-f(3)) / ...

    Text Solution

    |

  11. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  12. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  13. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  14. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  15. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  16. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  17. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  18. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  19. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  20. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |