Home
Class 12
MATHS
lim(xrarr0^-)(sinx)/(sqrt(x)) is equal t...

`lim_(xrarr0^-)(sinx)/(sqrt(x))` is equal to

A

0

B

1

C

`-(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} \] ### Step 2: Rationalize the denominator To simplify the expression, we can multiply the numerator and denominator by \( \sqrt{x} \): \[ \lim_{x \to 0^-} \frac{\sin x \cdot \sqrt{x}}{x} \] ### Step 3: Split the limit We can separate the limit into two parts: \[ \lim_{x \to 0^-} \frac{\sin x}{x} \cdot \lim_{x \to 0^-} \sqrt{x} \] ### Step 4: Evaluate the first limit We know from standard limit results that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus: \[ \lim_{x \to 0^-} \frac{\sin x}{x} = 1 \] ### Step 5: Evaluate the second limit Next, we evaluate: \[ \lim_{x \to 0^-} \sqrt{x} \] As \( x \) approaches \( 0 \) from the left, \( \sqrt{x} \) approaches \( 0 \) (note that \( \sqrt{x} \) is not defined for negative \( x \), but as \( x \) approaches \( 0 \) from the negative side, we consider the limit of the function as it approaches \( 0 \)): \[ \lim_{x \to 0^-} \sqrt{x} = 0 \] ### Step 6: Combine the results Now, we combine the results of both limits: \[ 1 \cdot 0 = 0 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

lim_(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(xrarr0)(|sinx|)/(x) is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. lim(xrarr0) (sin4x)/(1-sqrt(1-x)), is

    Text Solution

    |

  2. If G(x)=-sqrt(25-x). Then lim(xrarr1) (G(x)-G(1))/(x-1) has the value

    Text Solution

    |

  3. lim(xrarr0^-)(sinx)/(sqrt(x)) is equal to

    Text Solution

    |

  4. lim(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

    Text Solution

    |

  5. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  6. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  7. lim(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

    Text Solution

    |

  8. The value of lim(xrarroo) ((x-1)/(x+1))^(x), is

    Text Solution

    |

  9. Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt(x -> 3) (f(x)-f(3)) / ...

    Text Solution

    |

  10. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  11. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  12. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  13. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  14. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  15. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  16. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  17. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  18. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  19. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  20. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |