Home
Class 12
MATHS
The value of lim(xrarroo) ((x-1)/(x+1))^...

The value of `lim_(xrarroo) ((x-1)/(x+1))^(x)`, is

A

0

B

`e^-1`

C

`e^-2`

D

`e^-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \( \lim_{x \to \infty} \left(\frac{x-1}{x+1}\right)^x \), we will follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \left(\frac{x-1}{x+1}\right)^x \] We can simplify the fraction inside the limit: \[ \frac{x-1}{x+1} = \frac{x(1 - \frac{1}{x})}{x(1 + \frac{1}{x})} = \frac{1 - \frac{1}{x}}{1 + \frac{1}{x}} \] ### Step 2: Substitute into the limit Now, substituting this back into the limit gives us: \[ \lim_{x \to \infty} \left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right)^x \] ### Step 3: Identify the indeterminate form As \( x \to \infty \), both \( \frac{1 - \frac{1}{x}}{1 + \frac{1}{x}} \) approaches 1. Therefore, we have the form \( 1^\infty \), which is indeterminate. ### Step 4: Use logarithmic transformation To resolve this indeterminate form, we can take the natural logarithm: Let \( y = \left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right)^x \). Then, taking the logarithm: \[ \ln y = x \ln\left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right) \] ### Step 5: Simplify the logarithm Now we need to simplify \( \ln\left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right) \): \[ \ln\left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right) = \ln(1 - \frac{1}{x}) - \ln(1 + \frac{1}{x}) \] Using the Taylor expansion for \( \ln(1 + u) \approx u \) when \( u \) is small, we have: \[ \ln(1 - \frac{1}{x}) \approx -\frac{1}{x} \quad \text{and} \quad \ln(1 + \frac{1}{x}) \approx \frac{1}{x} \] Thus, \[ \ln\left(\frac{1 - \frac{1}{x}}{1 + \frac{1}{x}}\right) \approx -\frac{1}{x} - \frac{1}{x} = -\frac{2}{x} \] ### Step 6: Substitute back into the limit Now substituting back: \[ \ln y \approx x \left(-\frac{2}{x}\right) = -2 \] Thus, \[ y \approx e^{-2} \] ### Step 7: Conclude the limit Therefore, we conclude that: \[ \lim_{x \to \infty} \left(\frac{x-1}{x+1}\right)^x = e^{-2} \] ### Final Answer The value of the limit is \( e^{-2} \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo)((x+6)/(x+1))^(x+4) , is

The value of lim_(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

The value of lim_(xrarroo) (sinx)/(x) , is

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  2. lim(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

    Text Solution

    |

  3. The value of lim(xrarroo) ((x-1)/(x+1))^(x), is

    Text Solution

    |

  4. Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt(x -> 3) (f(x)-f(3)) / ...

    Text Solution

    |

  5. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  6. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  7. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  8. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  9. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  10. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  11. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  12. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  13. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  14. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  15. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  16. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  17. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  18. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  19. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  20. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |