Home
Class 12
MATHS
Let f(x) = 1 /(sqrt( 18 - x^2) The valu...

Let `f(x) = 1 /(sqrt( 18 - x^2)` The value of `Lt_(x -> 3) (f(x)-f(3)) / (x-3)` is

A

0

B

`-1//9`

C

`-1//3`

D

`1//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \) where \( f(x) = \frac{1}{\sqrt{18 - x^2}} \), we can follow these steps: ### Step 1: Evaluate \( f(3) \) First, we need to find \( f(3) \): \[ f(3) = \frac{1}{\sqrt{18 - 3^2}} = \frac{1}{\sqrt{18 - 9}} = \frac{1}{\sqrt{9}} = \frac{1}{3} \] ### Step 2: Substitute into the limit Now substitute \( f(3) \) back into the limit: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{f(x) - \frac{1}{3}}{x - 3} \] ### Step 3: Check for indeterminate form If we substitute \( x = 3 \) directly into the limit, we get: \[ f(3) - f(3) = 0 \quad \text{and} \quad x - 3 = 0 \] This results in the indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{f'(x)}{1} \] ### Step 5: Find \( f'(x) \) To find \( f'(x) \), we use the chain rule: \[ f(x) = (18 - x^2)^{-1/2} \] Using the derivative formula \( \frac{d}{dx}[x^n] = n \cdot x^{n-1} \): \[ f'(x) = -\frac{1}{2}(18 - x^2)^{-3/2} \cdot (-2x) = \frac{x}{(18 - x^2)^{3/2}} \] ### Step 6: Evaluate \( f'(3) \) Now we need to evaluate \( f'(3) \): \[ f'(3) = \frac{3}{(18 - 3^2)^{3/2}} = \frac{3}{(18 - 9)^{3/2}} = \frac{3}{9^{3/2}} = \frac{3}{27} = \frac{1}{9} \] ### Step 7: Conclusion Thus, the limit is: \[ \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = f'(3) = \frac{1}{9} \] ### Final Answer The value of \( \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \) is \( \frac{1}{9} \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x)=3x+|x| , then the value of f(3x)+f(-x)-f(x) is:

Let f(x^(3)) = x^(4) + x^(5) + x + 1 , then the value of f(8) is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x)=x^(3)-(1)/(x^(3)) , then find the value of f(x)+f(-x) .

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

If f(x)=x^3-frac{1}{x^(3)} find the value of f(x)+f(frac{1}{x})

Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |f(x)| + |g(x)| Let f(x) = x-3 and g(x) = 4-x, then The number of solution(s) of the above inequality for x lt 3 is

Let the function f satisfies f(x).f ′ (−x)=f(−x).f ′ (x) for all x and f(0)=3 The value of f(x).f(-x) for all x is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. lim(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

    Text Solution

    |

  2. The value of lim(xrarroo) ((x-1)/(x+1))^(x), is

    Text Solution

    |

  3. Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt(x -> 3) (f(x)-f(3)) / ...

    Text Solution

    |

  4. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  5. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  6. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  7. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  8. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  9. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  10. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  13. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  14. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  15. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  16. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  17. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  18. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  19. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  20. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |