Home
Class 12
MATHS
The value of lim(xrarr0) (e^x-(x+x))/(x^...

The value of `lim_(xrarr0) (e^x-(x+x))/(x^2)`,is

A

0

B

`1//2`

C

`2`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{e^x - (x + x)}{x^2} \), we can follow these steps: ### Step 1: Simplify the expression First, we rewrite the expression in the limit: \[ \lim_{x \to 0} \frac{e^x - 2x}{x^2} \] ### Step 2: Check the form of the limit Now, we substitute \( x = 0 \) into the expression: \[ e^0 - 2(0) = 1 - 0 = 1 \] The denominator \( x^2 \) approaches \( 0 \) as \( x \to 0 \). Thus, we have the form \( \frac{1 - 0}{0} \), which is of the form \( \frac{1}{0} \), indicating that we should apply L'Hôpital's Rule since we have an indeterminate form. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( e^x - 2x \) is \( e^x - 2 \). - The derivative of the denominator \( x^2 \) is \( 2x \). Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{e^x - 2}{2x} \] ### Step 4: Substitute again Now, substituting \( x = 0 \) into the new expression: \[ \frac{e^0 - 2}{2(0)} = \frac{1 - 2}{0} = \frac{-1}{0} \] This again indicates an indeterminate form, so we apply L'Hôpital's Rule once more. ### Step 5: Differentiate again Differentiating again: - The derivative of the numerator \( e^x - 2 \) is \( e^x \). - The derivative of the denominator \( 2x \) is \( 2 \). Now we have: \[ \lim_{x \to 0} \frac{e^x}{2} \] ### Step 6: Substitute again Now substituting \( x = 0 \): \[ \frac{e^0}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

lim_(xrarr0)x sec x

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. If f(x)=2/(x-3),g(x)=(x-3)/(x+4),a n dh(x)=-(2(2x+1))/(x^2+x-12),t h e...

    Text Solution

    |

  2. The value of lim(xrarr0) (a^x-b^x)/(x) ,is

    Text Solution

    |

  3. The value of lim(xrarr0) (e^x-(x+x))/(x^2),is

    Text Solution

    |

  4. lim(xrarr1) (1+cos pix)cot^2pi x is equal to

    Text Solution

    |

  5. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  6. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  7. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  8. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  9. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  10. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  11. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  12. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  13. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  14. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  15. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  16. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  17. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  18. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  19. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  20. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |