Home
Class 12
MATHS
If [x] denotes the greatest integer less...

If [x] denotes the greatest integer less than or equal to x,then the value of `lim_(x->1)(1-x+[x-1]+[1-x])` is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} (1 - x + [x - 1] + [1 - x]) \), where \([x]\) denotes the greatest integer less than or equal to \(x\), we will calculate the right-hand limit (RHL) and the left-hand limit (LHL) separately. ### Step 1: Calculate the Right-Hand Limit (RHL) We start by calculating the right-hand limit as \(x\) approaches 1 from the right (\(x \to 1^+\)): \[ \lim_{x \to 1^+} (1 - x + [x - 1] + [1 - x]) \] 1. **Evaluate \(1 - x\)**: - As \(x\) approaches 1 from the right, \(1 - x\) approaches \(0\). 2. **Evaluate \([x - 1]\)**: - For \(x \to 1^+\), \(x - 1\) approaches \(0^+\) (a small positive number). Therefore, \([x - 1] = 0\). 3. **Evaluate \([1 - x]\)**: - As \(x\) approaches 1 from the right, \(1 - x\) approaches \(0^-\) (a small negative number). Thus, \([1 - x] = -1\). Putting these values together: \[ \lim_{x \to 1^+} (1 - x + [x - 1] + [1 - x]) = 0 + 0 - 1 = -1 \] ### Step 2: Calculate the Left-Hand Limit (LHL) Next, we calculate the left-hand limit as \(x\) approaches 1 from the left (\(x \to 1^-\)): \[ \lim_{x \to 1^-} (1 - x + [x - 1] + [1 - x]) \] 1. **Evaluate \(1 - x\)**: - As \(x\) approaches 1 from the left, \(1 - x\) approaches \(0\). 2. **Evaluate \([x - 1]\)**: - For \(x \to 1^-\), \(x - 1\) approaches \(0^-\) (a small negative number). Therefore, \([x - 1] = -1\). 3. **Evaluate \([1 - x]\)**: - As \(x\) approaches 1 from the left, \(1 - x\) approaches \(0^+\) (a small positive number). Thus, \([1 - x] = 0\). Putting these values together: \[ \lim_{x \to 1^-} (1 - x + [x - 1] + [1 - x]) = 0 - 1 + 0 = -1 \] ### Step 3: Conclusion Since both the right-hand limit and left-hand limit are equal: \[ \lim_{x \to 1^+} = -1 \quad \text{and} \quad \lim_{x \to 1^-} = -1 \] We conclude: \[ \lim_{x \to 1} (1 - x + [x - 1] + [1 - x]) = -1 \] Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

If [x] denotes the greatest integer less than or equal to x, then the solution set of inequation ([x]-2)/(4-[x]) > 0, is ...

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

If [x] denotes the greatest integer less then or equal to x, then [ (6sqrt(6) + 14)^(2n +1)]

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

If the function f: R->R be such that f(x) = x-[x], where [x] denotes the greatest integer less than or equal to x, then f^-1(x) is

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(xto0) (int(0)^(x)tdt)/(xtan (x+pi)) is equal to

    Text Solution

    |

  2. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  3. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  4. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  5. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  6. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  7. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  8. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  9. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  10. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  11. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  12. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  13. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  14. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  15. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  16. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  17. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  18. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  19. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  20. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |