Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0`. Then `underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

A

0

B

`(1)/(2)(alpha-beta)^2`

C

`(a^2)/(2)(alpha-beta)^2`

D

`-(a^2)/(2)(alpha-beta)^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of ax^2 + bx + c = 0, the equation whose roots are 2 + alpha, 2 + beta is

If alpha, beta are the roots of ax^(2) + bx + c = 0 then the equation with roots (1)/(aalpha+b), (1)/(abeta+b) is

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha, beta are the roots of x^(2) + bx-c = 0 , then the equation whose roots are b and c is

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta are the roots of ax^(2)+bx+c=0 , form the equation whose roots are (1)/(alpha) and (1)/(beta) .

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If sin alpha and cos alpha are the roots of ax^(2) + bx + c = 0 , then find the relation satisfied by a, b and c .

If alpha, beta are the roots of a x^2 + bx + c = 0 and k in R then the condition so that alpha < k < beta is :

Let alpha,beta,gamma be the roots of x^3+ax^2+bx+c=0 then find sum alpha^2beta+sumalphabeta^2 .

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

    Text Solution

    |

  2. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  3. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  4. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  5. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  6. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  7. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  8. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  9. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  10. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  11. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  12. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  13. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  14. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  15. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  16. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  17. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  18. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  19. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  20. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |