Home
Class 12
MATHS
If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):...

If `f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):}` Then, `lim_(xrarr0) f(x)`

A

is equal to 1

B

is equal to`-1`

C

is equal to 0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 0, we start with the definition of the function: \[ f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We need to evaluate: \[ \lim_{x \to 0} f(x) \] ### Step 1: Analyze the limit for \( x \neq 0 \) Since we are interested in the limit as \( x \) approaches 0, we will focus on the case when \( x \neq 0 \): \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \] ### Step 2: Evaluate the behavior of \( \sin\left(\frac{1}{x}\right) \) The function \( \sin\left(\frac{1}{x}\right) \) oscillates between -1 and 1 as \( x \) approaches 0. Therefore, we can say: \[ -1 \leq \sin\left(\frac{1}{x}\right) \leq 1 \] ### Step 3: Multiply by \( x \) Now, if we multiply the entire inequality by \( x \) (keeping in mind that \( x \) approaches 0), we have: \[ -x \leq x \sin\left(\frac{1}{x}\right) \leq x \] ### Step 4: Apply the Squeeze Theorem As \( x \) approaches 0, both \( -x \) and \( x \) approach 0. Therefore, by the Squeeze Theorem: \[ \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 \] ### Step 5: Conclude the limit Thus, we conclude: \[ \lim_{x \to 0} f(x) = 0 \] ### Final Answer The limit is: \[ \lim_{x \to 0} f(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)x sec x

lim_(xrarr0) (sinx)/(x)= ?

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):} , (n in I) , then (a) lim_(xrarr0)f(x) exists for n >1 (b) lim_(xrarr0)f(x) exists for n<0 (c) lim_(xrarr0)f(x) does not exist for any value of n (d) lim_(xrarr0)f(x) cannot be determined

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

Evaluate lim_(xrarr0) f(x) , where

lim_(xrarr0)(x^3 log x)

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. If [x] denotes the greatest integer less than or equal to x,then the v...

    Text Solution

    |

  2. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  3. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  4. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  5. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  6. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  7. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  8. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  9. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  10. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  11. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  12. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  13. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  14. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  15. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  16. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  17. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  18. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  19. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  20. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |