Home
Class 12
MATHS
If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 the...

If `lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0` then the value of a and b are given by:

A

`a=1,b=(1)/(2)`

B

`a=1 , b=-(1)/(2)`

C

`a=-1,b=(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to \infty} \left( \sqrt{x^2 - x + 1} - ax - b \right) = 0 \] ### Step 1: Rationalize the expression We start by rationalizing the expression to eliminate the square root. We multiply and divide by the conjugate: \[ \lim_{x \to \infty} \frac{(\sqrt{x^2 - x + 1} - ax - b)(\sqrt{x^2 - x + 1} + ax + b)}{\sqrt{x^2 - x + 1} + ax + b} \] This simplifies to: \[ \lim_{x \to \infty} \frac{x^2 - x + 1 - (ax + b)^2}{\sqrt{x^2 - x + 1} + ax + b} \] ### Step 2: Expand the numerator Now we expand the numerator: \[ x^2 - x + 1 - (a^2x^2 + 2abx + b^2) = (1 - a^2)x^2 + (-1 - 2ab)x + (1 - b^2) \] ### Step 3: Analyze the limit The limit becomes: \[ \lim_{x \to \infty} \frac{(1 - a^2)x^2 + (-1 - 2ab)x + (1 - b^2)}{\sqrt{x^2 - x + 1} + ax + b} \] As \( x \to \infty \), the dominant term in the denominator is \( \sqrt{x^2} \), which is \( x \). Thus, we can approximate: \[ \sqrt{x^2 - x + 1} \sim x \text{ as } x \to \infty \] So the limit simplifies to: \[ \lim_{x \to \infty} \frac{(1 - a^2)x^2 + (-1 - 2ab)x + (1 - b^2)}{x + ax + b} \] ### Step 4: Set the coefficients for the limit to be zero For the limit to equal zero, the coefficient of \( x^2 \) in the numerator must be zero: \[ 1 - a^2 = 0 \implies a^2 = 1 \implies a = \pm 1 \] ### Step 5: Determine the value of \( b \) Next, we set the coefficient of \( x \) to zero: \[ -1 - 2ab = 0 \] Substituting \( a = 1 \): \[ -1 - 2(1)b = 0 \implies -1 - 2b = 0 \implies 2b = -1 \implies b = -\frac{1}{2} \] ### Step 6: Verify the case \( a = -1 \) If \( a = -1 \): \[ -1 - 2(-1)b = 0 \implies -1 + 2b = 0 \implies 2b = 1 \implies b = \frac{1}{2} \] However, we need to check if \( a = -1 \) leads to a valid limit. If \( a = -1 \), the denominator becomes problematic as it leads to division by zero. Therefore, we discard \( a = -1 \). ### Final Values Thus, the values of \( a \) and \( b \) are: \[ \boxed{a = 1, b = -\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2+x))

8. lim_(x->oo)(sqrt(x^2+x)-x)

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim(xrarr0) f(x)

    Text Solution

    |

  2. lim(xto-pi)(|x+pi|)/(sin x) is

    Text Solution

    |

  3. If lim(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are giv...

    Text Solution

    |

  4. lim(xto1) (sum(r=1)^(n)x^(r)-n)/(x-1) is equal to

    Text Solution

    |

  5. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  6. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  7. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  8. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  9. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  10. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  11. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  12. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  13. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  14. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  15. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  16. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  17. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  18. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  19. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  20. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |