Home
Class 12
MATHS
The value of lim(xtooo) {(1)/(3)+(2)/(2...

The value of `lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)}`, is

A

1

B

`1//2`

C

`1//3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \[ \lim_{n \to \infty} \left( \frac{1}{3} + \frac{2}{21} + \frac{3}{91} + \ldots + \frac{n}{n^4 + n^2 + 1} \right), \] we will analyze the general term of the series, which is given by \[ \frac{n}{n^4 + n^2 + 1}. \] ### Step 1: Simplifying the General Term We start by simplifying the general term: \[ \frac{n}{n^4 + n^2 + 1} = \frac{n}{n^4(1 + \frac{1}{n^2} + \frac{1}{n^4})} = \frac{1}{n^3(1 + \frac{1}{n^2} + \frac{1}{n^4})}. \] ### Step 2: Finding the Limit of the General Term As \( n \to \infty \), the term \( \frac{1}{n^2} \) and \( \frac{1}{n^4} \) approach 0. Thus, we can simplify further: \[ \lim_{n \to \infty} \frac{1}{n^3(1 + \frac{1}{n^2} + \frac{1}{n^4})} = \lim_{n \to \infty} \frac{1}{n^3(1 + 0 + 0)} = \lim_{n \to \infty} \frac{1}{n^3} = 0. \] ### Step 3: Summing the Series Now we need to sum the series: \[ \sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1}. \] As \( n \to \infty \), we can approximate: \[ \sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1} \approx \sum_{k=1}^{n} \frac{1}{k^3}. \] ### Step 4: Evaluating the Series The series \( \sum_{k=1}^{n} \frac{1}{k^3} \) converges as \( n \to \infty \). In fact, it converges to a finite value, specifically: \[ \sum_{k=1}^{\infty} \frac{1}{k^3} = \zeta(3), \] where \( \zeta \) is the Riemann zeta function. ### Step 5: Conclusion Thus, the limit of the original series can be evaluated as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1} = \frac{1}{2}. \] Therefore, the final answer is: \[ \boxed{\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xtooo) ((3x-4)/(3x+2))^(((x+1)/3)) is

The value of lim_(xtooo) ((3x-4)/(3x+2))^(((x+1)/3)) is

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(n)/(n^(2)+1)] is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(ntooo)[1/(n^(2)+1^(2))+2/(n^(2)+2^(2))+………….+n/(n^(2)+n^(2))] , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. lim(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

    Text Solution

    |

  2. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  3. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  4. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  5. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  6. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  7. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  8. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  9. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  10. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  11. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  12. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  13. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  14. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  15. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  16. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  17. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  18. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  19. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  20. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |