Home
Class 12
MATHS
The value lim(xrarr pi//2)(sinx)^(tanx),...

The value `lim_(xrarr pi//2)(sinx)^(tanx)`, is

A

0

B

1

C

`-1`

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( y = \lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x} \). To simplify the expression, we take the natural logarithm of both sides: \[ \ln y = \lim_{x \to \frac{\pi}{2}} \tan x \cdot \ln(\sin x) \] ### Step 2: Analyze the limit As \( x \to \frac{\pi}{2} \): - \( \sin x \to 1 \) (thus \( \ln(\sin x) \to \ln(1) = 0 \)) - \( \tan x \to \infty \) This gives us an indeterminate form of \( \infty \cdot 0 \). We can rewrite it as: \[ \ln y = \lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin x)}{\cot x} \] ### Step 3: Apply L'Hôpital's Rule Now we have a \( \frac{0}{0} \) form, so we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: - The derivative of \( \ln(\sin x) \) is \( \frac{\cos x}{\sin x} = \cot x \). - The derivative of \( \cot x \) is \( -\csc^2 x \). Thus, we have: \[ \ln y = \lim_{x \to \frac{\pi}{2}} \frac{\cot x}{-\csc^2 x} = \lim_{x \to \frac{\pi}{2}} -\cot x \cdot \sin^2 x \] ### Step 4: Substitute the limit As \( x \to \frac{\pi}{2} \): - \( \cot x \to 0 \) - \( \sin^2 x \to 1 \) So, \[ \ln y = \lim_{x \to \frac{\pi}{2}} -\cot x \cdot \sin^2 x = 0 \] ### Step 5: Exponentiate to find \( y \) Since \( \ln y = 0 \), we have: \[ y = e^0 = 1 \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr 0) (1+sinx)^(2cotx) , is

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

Evaluate lim_(xto 0^(+))(sinx)^(tanx)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

lim_(x->(pi/2)) (1-sinx)tanx =

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

The value of lim_(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)) , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(n->oo)(1.sum(r=1)^n(r)+2.sum(r=1)^(n-1)(r)+3sum(r=1)^...

    Text Solution

    |

  2. The value of lim(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1...

    Text Solution

    |

  3. The value lim(xrarr pi//2)(sinx)^(tanx), is

    Text Solution

    |

  4. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  5. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  6. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  7. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  8. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  9. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  10. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  11. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  12. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  13. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  14. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  15. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  16. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  17. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  18. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  19. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  20. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |