Home
Class 12
MATHS
lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)...

`lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)]` is equal to :

A

`oo`

B

n

C

k

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \log_{n-1}(n) \log_n(n+1) \log_{n+1}(n+2) \cdots \log_{n^k-1}(n^k) \right], \] we will break it down step by step. ### Step 1: Rewrite the logarithms in terms of natural logarithms Using the change of base formula for logarithms, we can rewrite each term: \[ \log_{a}(b) = \frac{\log(b)}{\log(a)}. \] Thus, we have: \[ \log_{n-1}(n) = \frac{\log(n)}{\log(n-1)}, \quad \log_n(n+1) = \frac{\log(n+1)}{\log(n)}, \quad \log_{n+1}(n+2) = \frac{\log(n+2)}{\log(n+1)}, \ldots, \quad \log_{n^k-1}(n^k) = \frac{\log(n^k)}{\log(n^k-1)}. \] ### Step 2: Write the product The entire expression can be rewritten as: \[ \frac{\log(n)}{\log(n-1)} \cdot \frac{\log(n+1)}{\log(n)} \cdot \frac{\log(n+2)}{\log(n+1)} \cdots \frac{\log(n^k)}{\log(n^k-1)}. \] Notice that in this product, many terms will cancel out: \[ = \frac{\log(n^k)}{\log(n-1)}. \] ### Step 3: Simplify the logarithm We know that: \[ \log(n^k) = k \log(n). \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \frac{k \log(n)}{\log(n-1)}. \] ### Step 4: Analyze the limit As \( n \to \infty \), we can approximate \(\log(n-1)\): \[ \log(n-1) \sim \log(n) \quad \text{(since } n-1 \text{ approaches } n \text{ as } n \to \infty\text{)}. \] So we have: \[ \lim_{n \to \infty} \frac{k \log(n)}{\log(n-1)} = \lim_{n \to \infty} \frac{k \log(n)}{\log(n)} = k. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left[ \log_{n-1}(n) \log_n(n+1) \log_{n+1}(n+2) \cdots \log_{n^k-1}(n^k) \right] = k. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of lim(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x),is

    Text Solution

    |

  2. The value of lim(xrarr3)(3^x-x^3)/(x^x-3^3), is

    Text Solution

    |

  3. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  4. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  5. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  6. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  7. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  8. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  9. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  10. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  11. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  12. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  13. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  14. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  15. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  18. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  19. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  20. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |