Home
Class 12
MATHS
The value of lim(xrarroo)(sqrt(n^2+1)+sq...

The value of `lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n))`, is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{\sqrt{n^2 + 1} + \sqrt{n}}{(n^4 + n)^{1/4} + 4\sqrt{n}}, \] we will simplify the expression step by step. ### Step 1: Simplify the Numerator The numerator is \(\sqrt{n^2 + 1} + \sqrt{n}\). We can factor out \(\sqrt{n^2}\) from \(\sqrt{n^2 + 1}\): \[ \sqrt{n^2 + 1} = \sqrt{n^2(1 + \frac{1}{n^2})} = \sqrt{n^2} \sqrt{1 + \frac{1}{n^2}} = n\sqrt{1 + \frac{1}{n^2}}. \] Thus, the numerator becomes: \[ n\sqrt{1 + \frac{1}{n^2}} + \sqrt{n} = n\sqrt{1 + \frac{1}{n^2}} + n^{1/2}. \] ### Step 2: Simplify the Denominator The denominator is \((n^4 + n)^{1/4} + 4\sqrt{n}\). We can factor out \(n^4\) from \((n^4 + n)^{1/4}\): \[ (n^4 + n)^{1/4} = (n^4(1 + \frac{1}{n^3}))^{1/4} = n^{4/4} (1 + \frac{1}{n^3})^{1/4} = n (1 + \frac{1}{n^3})^{1/4}. \] Thus, the denominator becomes: \[ n(1 + \frac{1}{n^3})^{1/4} + 4\sqrt{n} = n(1 + \frac{1}{n^3})^{1/4} + 4n^{1/2}. \] ### Step 3: Substitute Back into the Limit Now we can rewrite the limit: \[ \lim_{n \to \infty} \frac{n\sqrt{1 + \frac{1}{n^2}} + n^{1/2}}{n(1 + \frac{1}{n^3})^{1/4} + 4n^{1/2}}. \] ### Step 4: Divide Numerator and Denominator by \(n\) To simplify, we divide both the numerator and the denominator by \(n\): \[ \lim_{n \to \infty} \frac{\sqrt{1 + \frac{1}{n^2}} + \frac{1}{\sqrt{n}}}{(1 + \frac{1}{n^3})^{1/4} + \frac{4}{\sqrt{n}}}. \] ### Step 5: Evaluate the Limit as \(n \to \infty\) As \(n \to \infty\): - \(\sqrt{1 + \frac{1}{n^2}} \to 1\), - \(\frac{1}{\sqrt{n}} \to 0\), - \((1 + \frac{1}{n^3})^{1/4} \to 1\), - \(\frac{4}{\sqrt{n}} \to 0\). Thus, the limit simplifies to: \[ \frac{1 + 0}{1 + 0} = \frac{1}{1} = 1. \] ### Final Answer The value of the limit is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

The value of lim_(nto oo){3sqrt(n^2-n^3)+n} , is

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. lim(n->oo)[log(n-1)(n)logn(n+1)*log(n+1)(n+2).....log(n^k-1) (n^k)] i...

    Text Solution

    |

  2. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  3. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  4. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  5. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  6. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  7. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  8. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  9. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  10. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  11. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  12. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  13. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  14. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  15. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  16. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  17. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  18. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |

  19. If alpha,beta are the roots of the equation ax^2+bx+c=0, then lim(xrar...

    Text Solution

    |

  20. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |