Home
Class 12
MATHS
If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo...

If `l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2)`, then which one of the following is not correct?

A

`lgt 3`

B

`lgt4`

C

`l lt 4`

D

l is a transcendental number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression for \( L \): \[ L = \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} + \lim_{x \to \infty} \left( \frac{1 + 1}{(x^2)^2} \right) \] ### Step 1: Evaluate the second limit First, we evaluate the limit as \( x \) approaches infinity: \[ \lim_{x \to \infty} \left( \frac{1 + 1}{(x^2)^2} \right) = \lim_{x \to \infty} \left( \frac{2}{x^4} \right) \] As \( x \) approaches infinity, \( x^4 \) approaches infinity, thus: \[ \frac{2}{x^4} \to 0 \] So, \[ \lim_{x \to \infty} \left( \frac{1 + 1}{(x^2)^2} \right) = 0 \] ### Step 2: Evaluate the first limit Next, we evaluate the limit as \( x \) approaches -2: \[ \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} \] Substituting \( x = -2 \): \[ \tan(-2\pi) = 0 \quad \text{and} \quad x + 2 = 0 \] This gives us a \( \frac{0}{0} \) indeterminate form, so we apply L'Hôpital's Rule: \[ L = \lim_{x \to -2} \frac{\tan(\pi x)}{x + 2} \] ### Step 3: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: 1. The derivative of the numerator \( \tan(\pi x) \) is \( \pi \sec^2(\pi x) \). 2. The derivative of the denominator \( x + 2 \) is \( 1 \). Thus, we have: \[ L = \lim_{x \to -2} \frac{\pi \sec^2(\pi x)}{1} \] Substituting \( x = -2 \): \[ \sec^2(-2\pi) = \sec^2(0) = 1 \] So, \[ L = \pi \cdot 1 = \pi \] ### Step 4: Combine the limits Now we combine both limits: \[ L = \pi + 0 = \pi \] ### Step 5: Analyze the options Now we need to check which of the following statements is not correct: 1. \( L > 3 \) (True, since \( \pi \approx 3.14 \)) 2. \( L > 4 \) (False, since \( \pi < 4 \)) 3. \( L < 4 \) (True, since \( \pi < 4 \)) 4. \( L \) is a transcendental number (True, since \( \pi \) is transcendental) Thus, the statement that is not correct is: **\( L > 4 \)**.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) x^((1)/(x)).

Let lim _(xtooo) (2 ^(x) +a ^(x) +e ^(x))^(1//x)=L which of the following statement (s) is (are) correct ?

Evaluate lim_(xtooo)(1+2/x)^(x)

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Let L_(1)=lim_(xrarr4) (x-6)^(x)and L_(2)=lim_(xrarr4) (x-6)^(4) . Which of the following is true?

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

Evaluate lim_(xto1) (1-x)"tan"(pix)/(2).

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  2. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  3. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  4. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  5. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  6. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  7. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  8. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  9. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  10. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  11. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  12. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  15. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  16. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  17. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation ax^2+bx+c=0, then lim(xrar...

    Text Solution

    |

  19. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  20. The graph of function y=f(x) has a unique tangent at (e^(a),0) through...

    Text Solution

    |