Home
Class 12
MATHS
Let a= min { x^2+2x+3:x in R}and b=lim(...

Let ` a= min { x^2+2x+3:x in R}and b=lim_(x to0) (sin xcos x) /(e^x-e^-x)`. Then the value of `sum_(r=0)^(n) a^r,b^(n-r)`, is

A

`(2^(n+1)+1)/(3.2^n)`

B

`(2^(n+1)-1)/(3.2^n)`

C

`(2^(n)-1)/(3.2^n)`

D

`(4^(n+1)-1)/(3.2^n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \( a \) and \( b \) first, and then evaluate the summation. ### Step 1: Find the value of \( a \) We need to find the minimum value of the function \( f(x) = x^2 + 2x + 3 \). 1. **Identify the coefficients**: - Here, \( a = 1 \), \( b = 2 \), and \( c = 3 \). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot 3 = 4 - 12 = -8 \] Since the discriminant is negative, the quadratic has no real roots and opens upwards (as \( a > 0 \)), indicating it has a minimum. 3. **Find the vertex**: The vertex \( x \) coordinate is given by \( x = -\frac{b}{2a} = -\frac{2}{2 \cdot 1} = -1 \). 4. **Calculate \( f(-1) \)**: \[ f(-1) = (-1)^2 + 2(-1) + 3 = 1 - 2 + 3 = 2 \] Thus, \( a = 2 \). ### Step 2: Find the value of \( b \) We need to evaluate the limit: \[ b = \lim_{x \to 0} \frac{\sin x \cos x}{e^x - e^{-x}} \] 1. **Check the form**: As \( x \to 0 \), both the numerator and denominator approach 0, giving a \( \frac{0}{0} \) form. 2. **Use L'Hôpital's Rule**: Differentiate the numerator and denominator: - Derivative of the numerator: \( \frac{d}{dx}(\sin x \cos x) = \cos^2 x - \sin^2 x \). - Derivative of the denominator: \( \frac{d}{dx}(e^x - e^{-x}) = e^x + e^{-x} \). 3. **Evaluate the limit**: \[ b = \lim_{x \to 0} \frac{\cos^2 x - \sin^2 x}{e^x + e^{-x}} = \frac{1 - 0}{1 + 1} = \frac{1}{2} \] ### Step 3: Evaluate the summation The summation we need to evaluate is: \[ S = \sum_{r=0}^{n} a^r b^{n-r} \] 1. **Substitute values of \( a \) and \( b \)**: \[ S = \sum_{r=0}^{n} 2^r \left(\frac{1}{2}\right)^{n-r} \] This can be rewritten as: \[ S = \sum_{r=0}^{n} 2^r \cdot \frac{1}{2^{n-r}} = \sum_{r=0}^{n} \frac{2^r}{2^{n-r}} = \sum_{r=0}^{n} \frac{2^{2r - n}}{1} \] 2. **Factor out \( \frac{1}{2^n} \)**: \[ S = \frac{1}{2^n} \sum_{r=0}^{n} 2^{2r} \] 3. **Recognize the summation as a geometric series**: The series \( \sum_{r=0}^{n} 2^{2r} \) is a geometric series with first term \( 1 \) and common ratio \( 4 \): \[ \sum_{r=0}^{n} 2^{2r} = \frac{1(4^{n+1} - 1)}{4 - 1} = \frac{4^{n+1} - 1}{3} \] 4. **Combine results**: \[ S = \frac{1}{2^n} \cdot \frac{4^{n+1} - 1}{3} = \frac{4^{n+1} - 1}{3 \cdot 2^n} \] ### Final Result Thus, the value of the summation is: \[ S = \frac{4^{n+1} - 1}{3 \cdot 2^n} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Let a=min {x^2+2x+3, x in R} and b=lim_(theta->0)(1-costheta)/(theta^2) then the value of sum_(r=0)^n a^r*b^(n-r) is :

Evaluate lim_(x to0 ) ("sin" 3x)/("sin" 6x)

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If ("lim")_(x to0)(a e^x-b)/x = 2 , then find the value of a a n d bdot

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  2. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  3. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  4. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  5. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  6. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  7. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  8. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  9. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  10. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  11. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  12. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  15. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  16. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  17. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation ax^2+bx+c=0, then lim(xrar...

    Text Solution

    |

  19. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  20. The graph of function y=f(x) has a unique tangent at (e^(a),0) through...

    Text Solution

    |