Home
Class 12
MATHS
Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x...

Let `f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n))` , then which of the following alternative(s) is/ are correct?

A

`lim_(xto oo) xf(x)=2`

B

`lim_(xto1)f(x)` does not exist

C

`lim_(xto0) f(x)` does not exist

D

`lim_(xtooo) f(x)` is euqal to zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit function defined as: \[ f(x) = \lim_{n \to \infty} \frac{2x^{2n} \sin\left(\frac{1}{x}\right) + x}{1 + x^{2n}} \] ### Step 1: Analyze the limit as \( n \to \infty \) In the expression, both the numerator and denominator contain terms that grow with \( n \). The highest power of \( x \) in both the numerator and denominator is \( x^{2n} \). ### Step 2: Factor out \( x^{2n} \) We can factor \( x^{2n} \) from both the numerator and the denominator: \[ f(x) = \lim_{n \to \infty} \frac{x^{2n} \left(2 \sin\left(\frac{1}{x}\right) + \frac{x}{x^{2n}}\right)}{x^{2n} \left(1 + \frac{1}{x^{2n}}\right)} \] This simplifies to: \[ f(x) = \lim_{n \to \infty} \frac{2 \sin\left(\frac{1}{x}\right) + \frac{x}{x^{2n}}}{1 + \frac{1}{x^{2n}}} \] ### Step 3: Evaluate the limit as \( n \to \infty \) As \( n \to \infty \), \( \frac{x}{x^{2n}} \) approaches 0 (for \( x \neq 0 \)) and \( \frac{1}{x^{2n}} \) also approaches 0. Therefore, we have: \[ f(x) = \frac{2 \sin\left(\frac{1}{x}\right)}{1} \] Thus, we can write: \[ f(x) = 2 \sin\left(\frac{1}{x}\right) \] ### Step 4: Check the options 1. **Option 1: \( \lim_{x \to \infty} x f(x) = 2 \)** We compute: \[ \lim_{x \to \infty} x f(x) = \lim_{x \to \infty} x \cdot 2 \sin\left(\frac{1}{x}\right) \] Using the fact that \( \sin\left(\frac{1}{x}\right) \approx \frac{1}{x} \) as \( x \to \infty \): \[ \lim_{x \to \infty} x \cdot 2 \cdot \frac{1}{x} = 2 \] Thus, **Option 1 is correct**. 2. **Option 2: \( \lim_{x \to 1} f(x) \) does not exist** We calculate: \[ f(1) = 2 \sin(1) \] Since \( \sin(1) \) is defined, **Option 2 is incorrect**. 3. **Option 3: \( \lim_{x \to 0} f(x) \) does not exist** As \( x \to 0 \): \[ f(x) = 2 \sin\left(\frac{1}{x}\right) \] The sine function oscillates between -1 and 1, hence \( f(x) \) does not converge. Thus, **Option 3 is correct**. 4. **Option 4: \( \lim_{x \to \infty} f(x) = 0 \)** As \( x \to \infty \): \[ f(x) = 2 \sin\left(\frac{1}{x}\right) \to 2 \cdot 0 = 0 \] Thus, **Option 4 is correct**. ### Conclusion The correct options are **1, 3, and 4**.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

If phi(x)=lim_(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the following is correct

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x) be a differentiable function on the interval (-oo,0) such that f(1)=5 and lim_(a to x)(af(x)-xf(a))/(a-x)=2, forall x in R. Then which of the following alternatives is/are correct?

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let lim _(xtooo) (2 ^(x) +a ^(x) +e ^(x))^(1//x)=L which of the following statement (s) is (are) correct ?

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  2. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  3. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  4. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  5. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  6. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  7. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  8. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  9. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  10. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  11. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  12. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  15. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  16. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  17. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation ax^2+bx+c=0, then lim(xrar...

    Text Solution

    |

  19. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  20. The graph of function y=f(x) has a unique tangent at (e^(a),0) through...

    Text Solution

    |