Home
Class 12
MATHS
If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2...

If `L=lim_(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4)` exists and is finie then a=, b=, c= L=

A

`(1)/(20)`

B

`(2)/(45)`

C

`(3)/(40)`

D

`(1)/(40)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we need to analyze the expression and apply the necessary calculus techniques. Here’s a step-by-step solution: ### Step 1: Write down the limit expression We start with the limit: \[ L = \lim_{x \to 0} \frac{a \sin x - bx + cx^2 + x^3}{2x^2 \log(1+x) - 2x^3 + x^4} \] ### Step 2: Series expansion for \(\sin x\) and \(\log(1+x)\) Using Taylor series expansions around \(x = 0\): - The series expansion for \(\sin x\) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] - The series expansion for \(\log(1+x)\) is: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + O(x^5) \] ### Step 3: Substitute the expansions into the limit expression Substituting these expansions into our limit: \[ \sin x \approx x - \frac{x^3}{6} \] \[ \log(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} \] Now substituting these into the limit: \[ L = \lim_{x \to 0} \frac{a\left(x - \frac{x^3}{6}\right) - bx + cx^2 + x^3}{2x^2\left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) - 2x^3 + x^4} \] ### Step 4: Simplify the numerator The numerator becomes: \[ a\left(x - \frac{x^3}{6}\right) - bx + cx^2 + x^3 = (a-b)x + cx^2 + \left(1 - \frac{a}{6}\right)x^3 \] ### Step 5: Simplify the denominator The denominator simplifies to: \[ 2x^2\left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) - 2x^3 + x^4 = 2x^3 - x^4 + \frac{2}{3}x^5 - 2x^3 + x^4 = \frac{2}{3}x^5 \] ### Step 6: Set conditions for the limit to exist For the limit to exist and be finite, both the numerator and denominator must approach zero as \(x \to 0\): 1. The coefficient of \(x\) in the numerator must be zero: \[ a - b = 0 \implies a = b \] 2. The coefficient of \(x^2\) must also be zero: \[ c = 0 \] 3. The coefficient of \(x^3\) must equal the coefficient of \(x^5\) in the denominator: \[ 1 - \frac{a}{6} = 0 \implies a = 6 \] ### Step 7: Final values Since \(a = b\) and \(c = 0\), we have: \[ a = 6, \quad b = 6, \quad c = 0 \] ### Step 8: Calculate \(L\) Now substituting \(a\) back into the limit: \[ L = \lim_{x \to 0} \frac{(6 - 6)x + 0 + \left(1 - 1\right)x^3}{\frac{2}{3}x^5} = \lim_{x \to 0} \frac{0}{\frac{2}{3}x^5} = \frac{6}{\frac{2}{3}} = 9 \] ### Final Answer Thus, we find: \[ a = 6, \quad b = 6, \quad c = 0, \quad L = \frac{3}{40} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then Equation ax^(2)+bx+c=0 has

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The solutions set of ||x+c|-2a|lt4b is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

lim_(xrarr0)[(log(1+x) -x + x^2/2)/x^3]

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Exercise
  1. The value of underset(mtooo)lim("cos"(x)/(m))^(m) is

    Text Solution

    |

  2. The value of lim(xrarroo)(sqrt(n^2+1)+sqrt(n))/((n^4+n)^(1/4)+4sqrt(n)...

    Text Solution

    |

  3. The value of lim(xrarr0) (x^2sin((1)/(x)))/(sinx), is

    Text Solution

    |

  4. If l=lim(xto-2) (tanpix)/(x+2)+lim(xtooo) ( (1+1)/(x^2)^2), then which...

    Text Solution

    |

  5. The value of lim(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] ...

    Text Solution

    |

  6. lim(xto oo) (1^2.n+2^2.(n-1)+3^2.(n-2)+......+n^2.1)/(1^3+2^3......+n^...

    Text Solution

    |

  7. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  8. Let a= min { x^2+2x+3:x in R}and b=lim(x to0) (sin xcos x) /(e^x-e^-x...

    Text Solution

    |

  9. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  10. Let f(x)=lim(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which o...

    Text Solution

    |

  11. Assume that underset(thetararr-1)(lim)f(theta) exists and (theta^(2)+t...

    Text Solution

    |

  12. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. The value of lim(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes grea...

    Text Solution

    |

  15. underset(xto0)lim(x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, ex...

    Text Solution

    |

  16. lim(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

    Text Solution

    |

  17. If L=lim(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and ...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation ax^2+bx+c=0, then lim(xrar...

    Text Solution

    |

  19. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  20. The graph of function y=f(x) has a unique tangent at (e^(a),0) through...

    Text Solution

    |