Home
Class 12
MATHS
The value of int ((ax^(2)-b)dx)/(xsqrt(c...

The value of `int ((ax^(2)-b)dx)/(xsqrt(c^(2)x^(2)-(ax^(2)+b)^(2)))` is equal to

A

`sin^(-1)((ax+(b)/(x))/(c))+k`

B

`sin^(-1)((ax^(2)+(b)/(x^(2)))/(c))+k`

C

`cos^(-1)((ax+b//x)/(c))+k`

D

`cos^(-1)((ax^(2)+(b)/(x^(2)))/(c))+k`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

int (ax +b)^(2)dx

The value of int(a x^2-b)/(xsqrt(c^2x^2-(a x^2+b)^2)) (a) 1/csin^(-1)(a x+b/x)+k (b) csin^(-1)(a+b/x)+e (c) sin^(-1)((a x+b/x)/c)+k (d) none of these

int (ax^2+bx+c)dx =

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

If the value of definite integral int_(0)^(2)(ax +b)/((x^(2)+5x+6)^(2))dx is equal to (7)/(30) , then find the value of ((a^(2)+b^(2)))/(2) .

Evaluate int (dx)/((sqrt((x-alpha)^(2)-beta^(2)))(ax+b)) .

Evaluate: intx^2sqrt (ax+b)dx