Home
Class 12
MATHS
int(x^(3))/((1+x^(2))^(1//3))dx is equal...

`int(x^(3))/((1+x^(2))^(1//3))dx` is equal to

A

`(20)/(3)(1+x^(2))^(2//3)(2x^(2)-3)+C`

B

`(3)/(20)(1+x^(2))^(2//3)(2x^(2)-3)+C`

C

`(3)/(20)(1+x^(2))^(2//3)(2x^(2)+3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3}{(1+x^2)^{1/3}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = 1 + x^2 \). Then, we have: \[ x^2 = t - 1 \] Differentiating both sides gives: \[ 2x \, dx = dt \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] ### Step 2: Express \( x^3 \) in terms of \( t \) We can express \( x^3 \) as: \[ x^3 = x \cdot x^2 = x(t - 1) \] Substituting \( x = \sqrt{t - 1} \) (since \( x^2 = t - 1 \)): \[ x^3 = \sqrt{t - 1} \cdot (t - 1) = (t - 1)^{3/2} \] ### Step 3: Substitute into the integral Now substituting \( x^3 \) and \( dx \) into the integral: \[ \int \frac{x^3}{(1+x^2)^{1/3}} \, dx = \int \frac{(t - 1)^{3/2}}{t^{1/3}} \cdot \frac{dt}{2} \] This simplifies to: \[ \frac{1}{2} \int \frac{(t - 1)^{3/2}}{t^{1/3}} \, dt \] ### Step 4: Simplify the integrand We can rewrite the integrand: \[ \frac{(t - 1)^{3/2}}{t^{1/3}} = (t - 1)^{3/2} \cdot t^{-1/3} \] Now we can expand \( (t - 1)^{3/2} \) using the binomial theorem or directly integrate. ### Step 5: Integrate Using the binomial expansion: \[ (t - 1)^{3/2} = t^{3/2} - \frac{3}{2}t^{1/2} + \frac{3}{8}t^{-1/2} \] Thus: \[ \int (t - 1)^{3/2} t^{-1/3} \, dt = \int \left( t^{3/2 - 1/3} - \frac{3}{2} t^{1/2 - 1/3} + \frac{3}{8} t^{-1/2 - 1/3} \right) dt \] Calculating the powers: - \( 3/2 - 1/3 = \frac{9}{6} - \frac{2}{6} = \frac{7}{6} \) - \( 1/2 - 1/3 = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \) - \( -1/2 - 1/3 = -\frac{3}{6} - \frac{2}{6} = -\frac{5}{6} \) So we have: \[ \int \left( t^{7/6} - \frac{3}{2} t^{1/6} + \frac{3}{8} t^{-5/6} \right) dt \] ### Step 6: Integrate term by term Integrating each term: \[ \int t^{7/6} \, dt = \frac{t^{13/6}}{13/6} = \frac{6}{13} t^{13/6} \] \[ \int t^{1/6} \, dt = \frac{t^{7/6}}{7/6} = \frac{6}{7} t^{7/6} \] \[ \int t^{-5/6} \, dt = \frac{t^{1/6}}{1/6} = 6 t^{1/6} \] ### Step 7: Combine results Putting it all together: \[ \frac{1}{2} \left( \frac{6}{13} t^{13/6} - \frac{9}{7} t^{7/6} + \frac{9}{4} t^{1/6} \right) + C \] ### Step 8: Substitute back \( t = 1 + x^2 \) Finally, substituting back \( t = 1 + x^2 \): \[ = \frac{3}{13} (1 + x^2)^{13/6} - \frac{9}{14} (1 + x^2)^{7/6} + \frac{9}{8} (1 + x^2)^{1/6} + C \] ### Final Answer Thus, the integral \( \int \frac{x^3}{(1+x^2)^{1/3}} \, dx \) is equal to: \[ \frac{3}{13} (1 + x^2)^{13/6} - \frac{9}{14} (1 + x^2)^{7/6} + \frac{9}{8} (1 + x^2)^{1/6} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to