Home
Class 12
MATHS
int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal...

`int(1+x^(2))/(xsqrt(1+x^(4)))dx` is equal to

A

`-log|x-(1)/(x)+sqrt((x-(1)/(x))^(2))-2|+C`

B

`log|x-(1)/(x)+sqrt((x-(1)/(x))^(2))+2|+C`

C

`-log|x-(1)/(x)+sqrt((x-(1)/(x))^(2))-2|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + x^2}{x \sqrt{1 + x^4}} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand by factoring out \( x^2 \) from the square root in the denominator: \[ I = \int \frac{1 + x^2}{x \sqrt{1 + x^4}} \, dx = \int \frac{1 + x^2}{x \sqrt{x^4(1 + \frac{1}{x^4})}} \, dx \] This simplifies to: \[ I = \int \frac{1 + x^2}{x^2 \sqrt{1 + \frac{1}{x^4}}} \, dx \] ### Step 2: Rewrite the integrand Now, we can express the integrand as: \[ I = \int \frac{1}{x^2 \sqrt{1 + \frac{1}{x^4}}} + \int \frac{1}{\sqrt{1 + \frac{1}{x^4}}} \, dx \] ### Step 3: Change of variable Let’s consider the substitution \( t = x - \frac{1}{x} \). Then, we compute the differential: \[ dt = \left(1 + \frac{1}{x^2}\right) dx \] This means \( dx = \frac{dt}{1 + \frac{1}{x^2}} \). ### Step 4: Substitute in the integral Substituting \( t \) into the integral, we have: \[ I = \int \frac{dt}{\sqrt{t^2 + 2}} \] ### Step 5: Solve the integral The integral \( \int \frac{dt}{\sqrt{t^2 + 2}} \) can be solved using the standard integral formula: \[ \int \frac{dx}{\sqrt{x^2 + a^2}} = \ln |x + \sqrt{x^2 + a^2}| + C \] Thus, we have: \[ I = \ln \left| t + \sqrt{t^2 + 2} \right| + C \] ### Step 6: Substitute back for \( t \) Now, substituting back for \( t \): \[ I = \ln \left| x - \frac{1}{x} + \sqrt{\left(x - \frac{1}{x}\right)^2 + 2} \right| + C \] ### Final Answer Thus, the final answer is: \[ I = \ln \left| x - \frac{1}{x} + \sqrt{x^2 - 2 + \frac{1}{x^2} + 2} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int(x^2-1)/(xsqrt(1+x^4)) dx

int(1)/(x(x^(4)-1))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(x^2-1)/(xsqrt(x^4+3x^2+1) dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to