Home
Class 12
MATHS
If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)...

If `f'(x)=(1)/((1+x^(2))^(3//2))` and `f(0)=0,` then `f(1)` is equal to :

A

`-(1)/(sqrt(2))`

B

`(1)/(sqrt(2))`

C

`sqrt(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

Let f(x) is a cubic polynomial with real coefficients, x in R such that f''(3)=0 , f'(5)=0 . If f(3)=1 and f(5)=-3 , then f(1) is equal to-

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to