Home
Class 12
MATHS
int (x)^(1/3) (root(7)(1+root(3)(x^(4)))...

`int (x)^(1/3) (root(7)(1+root(3)(x^(4))))dx` is equal to

A

`(21)/(32){1+root(3)(x^(4))}^(8//7)+C`

B

`(32)/(21){1+root(3)(x^(4))}^(8//7)+C`

C

`(7)/(32){1+root(3)(x^(4))}^(8//7)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{1/3} \left(1 + (x^{4/3})\right)^{1/7} dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + x^{4/3} \). Then, we differentiate both sides to find \( dx \) in terms of \( dt \). \[ \frac{dt}{dx} = \frac{4}{3} x^{1/3} \implies dt = \frac{4}{3} x^{1/3} dx \implies dx = \frac{3}{4} \frac{dt}{x^{1/3}} \] ### Step 2: Express \( x^{1/3} \) in terms of \( t \) From our substitution \( t = 1 + x^{4/3} \), we can express \( x^{4/3} \) as \( t - 1 \). Thus, \[ x^{4/3} = t - 1 \implies x^{1/3} = (t - 1)^{3/4} \] ### Step 3: Substitute back into the integral Now we can substitute \( x^{1/3} \) and \( dx \) into the integral: \[ I = \int (t - 1)^{3/4} t^{1/7} \cdot \frac{3}{4} \frac{dt}{(t - 1)^{3/4}} = \frac{3}{4} \int t^{1/7} dt \] ### Step 4: Integrate Now we can integrate: \[ I = \frac{3}{4} \cdot \frac{t^{1/7 + 1}}{1/7 + 1} + C = \frac{3}{4} \cdot \frac{t^{8/7}}{8/7} + C = \frac{3}{4} \cdot \frac{7}{8} t^{8/7} + C \] ### Step 5: Substitute back for \( t \) Now substitute back \( t = 1 + x^{4/3} \): \[ I = \frac{21}{32} (1 + x^{4/3})^{8/7} + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{21}{32} (1 + x^{4/3})^{8/7} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

int(root(3)(1+root(4)(x)))/(sqrtx)\ dx is equal to :

int(x^(3))/(x+1)dx is equal to

int(1)/(root(3)(x^2))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int(1+x)/(1+3sqrt(x))dx is equal to