Home
Class 12
MATHS
int(1)/((a^(2)+x^(2))^(3//2))dx is equal...

`int(1)/((a^(2)+x^(2))^(3//2))dx` is equal to

A

`(x)/(a^(2)sqrt(a^(2)+x^(2)))+C`

B

`(x)/((a^(2)+x^(2))^(3//3))+C`

C

`(1)/(a^(2)sqrt(a^(2)+x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{(a^2 + x^2)^{3/2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{(a^2 + x^2)^{3/2}} \, dx \] ### Step 2: Use a Substitution We will use the substitution \( t = \frac{x^2}{a^2 + x^2} \). This implies: \[ 1 + \frac{a^2}{x^2} = \frac{a^2 + x^2}{x^2} \implies \frac{a^2}{x^2} = \frac{1}{t} - 1 \] Differentiating \( t \) gives us: \[ dt = \frac{2x}{(a^2 + x^2)^2} \, dx \implies dx = \frac{(a^2 + x^2)^2}{2x} \, dt \] ### Step 3: Substitute into the Integral Now substituting \( dx \) in terms of \( dt \): \[ I = \int \frac{(a^2 + x^2)^2}{2x} \cdot \frac{1}{(a^2 + x^2)^{3/2}} \, dt \] This simplifies to: \[ I = \int \frac{(a^2 + x^2)^{1/2}}{2x} \, dt \] ### Step 4: Simplify the Integral Now we can simplify further. Notice that: \[ \frac{(a^2 + x^2)^{1/2}}{x} = \sqrt{\frac{a^2 + x^2}{x^2}} = \sqrt{\frac{a^2}{x^2} + 1} = \sqrt{1 + \frac{a^2}{x^2}} = \sqrt{1 + t} \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int \sqrt{1 + t} \, dt \] ### Step 5: Integrate The integral of \( \sqrt{1 + t} \) is: \[ \int \sqrt{1 + t} \, dt = \frac{2}{3}(1 + t)^{3/2} + C \] So, substituting back, we have: \[ I = \frac{1}{2} \cdot \frac{2}{3} (1 + t)^{3/2} + C = \frac{1}{3} (1 + t)^{3/2} + C \] ### Step 6: Substitute Back for \( t \) Recall that \( t = \frac{x^2}{a^2 + x^2} \): \[ I = \frac{1}{3} \left(1 + \frac{x^2}{a^2 + x^2}\right)^{3/2} + C = \frac{1}{3} \left(\frac{a^2 + 2x^2}{a^2 + x^2}\right)^{3/2} + C \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{x}{a^2 \sqrt{a^2 + x^2}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int_(0)^(2) [x^(2)]dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to