Home
Class 12
MATHS
int(1)/(x(x^(4)-1))dx is equal to...

`int(1)/(x(x^(4)-1))dx` is equal to

A

`(1)/(4)log|(x^(4))/(x^(4)-1)|+C`

B

`(1)/(4)log|(x^(4)-1)/(x^(4))|+C`

C

`log|(x^(4)-1)/(x^(4))|+C`

D

`log|(x^(4))/(x^(4)-1)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x(x^4 - 1)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x(x^4 - 1)} \, dx \] To simplify the expression, we can multiply and divide by \( x^3 \): \[ I = \int \frac{x^3}{x^4(x^4 - 1)} \, dx \] ### Step 2: Substitution Let \( t = x^4 \). Then, differentiate both sides: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] Substituting \( x^3 \, dx \) into the integral: \[ I = \int \frac{1}{t(t - 1)} \cdot \frac{dt}{4} = \frac{1}{4} \int \frac{1}{t(t - 1)} \, dt \] ### Step 3: Partial Fraction Decomposition Now we need to decompose \( \frac{1}{t(t - 1)} \) into partial fractions: \[ \frac{1}{t(t - 1)} = \frac{A}{t} + \frac{B}{t - 1} \] Multiplying through by the denominator \( t(t - 1) \): \[ 1 = A(t - 1) + Bt \] Expanding and rearranging gives: \[ 1 = At - A + Bt \quad \Rightarrow \quad 1 = (A + B)t - A \] From this, we can equate coefficients: 1. \( A + B = 0 \) 2. \( -A = 1 \) Solving these equations, we find: - From \( -A = 1 \), we have \( A = -1 \). - Substituting \( A \) into \( A + B = 0 \) gives \( -1 + B = 0 \) or \( B = 1 \). Thus, we have: \[ \frac{1}{t(t - 1)} = \frac{-1}{t} + \frac{1}{t - 1} \] ### Step 4: Integrate Substituting back into the integral: \[ I = \frac{1}{4} \left( \int \frac{-1}{t} \, dt + \int \frac{1}{t - 1} \, dt \right) \] Calculating the integrals: \[ I = \frac{1}{4} \left( -\ln |t| + \ln |t - 1| \right) + C \] This simplifies to: \[ I = \frac{1}{4} \ln \left| \frac{t - 1}{t} \right| + C \] ### Step 5: Substitute Back Now, substituting back \( t = x^4 \): \[ I = \frac{1}{4} \ln \left| \frac{x^4 - 1}{x^4} \right| + C \] This can be simplified further: \[ I = \frac{1}{4} \ln \left| \frac{x^4 - 1}{x^4} \right| + C = \frac{1}{4} \left( \ln |x^4 - 1| - \ln |x^4| \right) + C \] Using properties of logarithms: \[ I = \frac{1}{4} \ln \left| \frac{x^4 - 1}{x^4} \right| + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{4} \ln \left| \frac{x^4 - 1}{x^4} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)+4x+13)dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

int_(-1)^(1)(x^2+1)dx is equal to

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to