Home
Class 12
MATHS
int(1+x)/(1+3sqrt(x))dx is equal to...

`int(1+x)/(1+3sqrt(x))dx` is equal to

A

`(3)/(5)x^(5//3)+x-(3)/(4)x^(4//3)+x+C`

B

`(3)/(5)x^(5//3)-(3)/(4)x^(4//3)+C`

C

`(3)/(5)x^(5//3)-(3)/(4)x^(4//3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1+x}{1+3\sqrt{x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the numerator We can express \( 1 + x \) in a different form. Notice that: \[ 1 + x = 1^3 + (3\sqrt{x})^3 \] This can be rewritten using the identity for the sum of cubes: \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \] where \( a = 1 \) and \( b = 3\sqrt{x} \). ### Step 2: Apply the sum of cubes formula Using the sum of cubes formula: \[ 1 + x = (1 + 3\sqrt{x})\left(1^2 - 1 \cdot 3\sqrt{x} + (3\sqrt{x})^2\right) \] This simplifies to: \[ 1 + x = (1 + 3\sqrt{x})(1 - 3\sqrt{x} + 9x) \] ### Step 3: Substitute back into the integral Now we substitute this back into the integral: \[ I = \int \frac{(1 + 3\sqrt{x})(1 - 3\sqrt{x} + 9x)}{1 + 3\sqrt{x}} \, dx \] The \( 1 + 3\sqrt{x} \) terms cancel out: \[ I = \int (1 - 3\sqrt{x} + 9x) \, dx \] ### Step 4: Integrate each term separately Now we can integrate each term: \[ I = \int 1 \, dx - 3\int \sqrt{x} \, dx + 9\int x \, dx \] Calculating each integral: 1. \( \int 1 \, dx = x \) 2. \( \int \sqrt{x} \, dx = \frac{2}{3}x^{3/2} \) 3. \( \int x \, dx = \frac{1}{2}x^2 \) Substituting these results back gives: \[ I = x - 3 \cdot \frac{2}{3}x^{3/2} + 9 \cdot \frac{1}{2}x^2 \] This simplifies to: \[ I = x - 2x^{3/2} + \frac{9}{2}x^2 + C \] ### Final Result Thus, the final result for the integral is: \[ I = x - 2x^{3/2} + \frac{9}{2}x^2 + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

inte^(sqrt(x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int (1)/(sqrt(x)) dx

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int((1+x)^3)/(3sqrt(x^2))dx

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int sqrt((x)/( 1-x))dx is equal to